Advertisement

Effect of iodixanol particle size on the mechanical properties of a PMMA based bone cement

  • Fred KjellsonEmail author
  • Saba Abdulghani
  • K. E. Tanner
  • Ian D. McCarthy
  • Lars Lidgren
Article

Abstract

Iodixanol (IDX) is a water soluble opacifier widely used in radiographical examinations of blood vessels and neural tissue, and it has been suggested as a potential contrast media in acrylic bone cement. The effect of the iodixanol particle size on the polymerisation process of the bone cement, the molecular weight, and the quasi-static mechanical properties have been investigated in this article. The investigation was performed using radiolucent Palacos powder mixed with 8 wt% of iodixanol with particle sizes ranging from 3 to 20 μm MMD, compared with commercial Palacos R (15 wt% ZrO2) as control. Tensile, compressive and flexural tests showed that smaller particles (groups with 3, 4, and 5 μm particles) resulted in significantly lower mechanical properties than the larger particles (groups with 15, 16, and 20 μm particles). There was no difference in molecular weight between the groups. The thermographical investigation showed that the IDX cements exhibit substantially lower maximum temperatures than Palacos R, with the 4 μm IDX group having the lowest maximum temperature. The isothermal and the constant rate differential scanning calorimetry (DSC) did not show any difference in polymerisation heat (ΔH) or glass transition temperature (T g) between radiolucent cement, or cement containing either IDX, or ZrO2. The findings show that the particle size for a bone cement containing iodixanol should be above 8 μm MMD.

Keywords

Differential Scanning Calorimetry Glass Transition Temperature Bone Cement Iodixanol Ultimate Tensile Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Biomet Europe for supplying the bone cement used in this study and Charlotte Trotzig (Polymer Science and Engineering, LTH, Sweden) for the excellent help on DSC. This study was supported by grants from Medical Faculty at Lund University, Swedish Research Council (project 09509) and Stiftelsen för bistånd åt rörelsehindrade i Skåne.

References

  1. 1.
    L. CARAVIA, D. DOWSON, J. FISHER and B. JOBBINS, Proc. Inst. Mech. Eng [H.] 204 (1990) 65Google Scholar
  2. 2.
    J. R. COOPER, D. DOWSON, J. FISHER and B. JOBBINS, J. Med. Eng Technol. 15 (1991) 63Google Scholar
  3. 3.
    G. H. ISAAC, B. M. WROBLEWSKI, J. R. ATKINSON and D. DOWSON, Clin. Orthop. Relat. R. 276 (1992) 115Google Scholar
  4. 4.
    P. ASPENBERG and H. VAN DER VIS, Clin. Orthop. Relat. R. 352 (1998) 75Google Scholar
  5. 5.
    J. A. WIMHURST, R. A. BROOKS and N. RUSHTON, J. Bone. Joint. Surg. Br. 83B (2001) 278CrossRefGoogle Scholar
  6. 6.
    J. A. WIMHURST, R. A. BROOKS, N. RUSHTON, J. Bone. Joint. Surg. Br. 83B (2001) 588CrossRefGoogle Scholar
  7. 7.
    F. KJELLSON, T. ALMEN, K. E. TANNER, I. D. MCCARTHY and L. LIDGREN, J. Biomed. Mater. Res. 70B (2004) 354CrossRefGoogle Scholar
  8. 8.
    T. ALMÉN, Acta Radiol. Suppl. 399 (1995) 2Google Scholar
  9. 9.
    J. S. WANG, J. DIAZ, A. SABOKBAR, N. A. ATHANASOU, F. KJELLSON, K. E. TANNER, I. D. MCCARTHY and L. LIDGREN, J Roy Soc Interface 2 (2005) 71CrossRefGoogle Scholar
  10. 10.
    F. KJELLSON, B. BRUDELI, I. D. MCCARTHY, L. LIDGREN, J. Biomed. Mater. Res. 71A (2004) 292CrossRefGoogle Scholar
  11. 11.
    F. KJELLSON, J. S. WANG, T. ALMEN, A. MATTSSON, J. KLAVENESS, K. E. TANNER and L. LIDGREN, J. Mater. Sci Mater. Med. 12 (2001) 889CrossRefGoogle Scholar
  12. 12.
    A. BORZACCHIELLO, L. AMBROSIO, L. NICOLAIS, E. J. HARPER, K. E. TANNER and W. BONFIELD, J. Mater. Sci Mater. Med. 9 (1998) 835CrossRefGoogle Scholar
  13. 13.
    A. BORZACCHIELLO, L. AMBROSIO, L. NICOLAIS, E. J. HARPER, K. E. TANNER and W. BONFIELD, J. Mater. Sci Mater. Med. 9 (1998) 317CrossRefGoogle Scholar
  14. 14.
    S. N. ABDULGHANI, S. N. NAZHAT, J. C. BEHIRI and S. DEB, J. Biomater. Sci Polym. Ed. 14 (2003) 1229CrossRefGoogle Scholar
  15. 15.
    K. FRIEDRICH and U. A. KARSCH, J. Mater. Sci. 16 (1981) 2167CrossRefGoogle Scholar
  16. 16.
    C. LIU, S. M. GREEN, N. D. WATKINS, P. J. GREGG and A. W. MCCASKIE, Proc. Inst. Mech. Eng [H.] 215 (2001) 359Google Scholar
  17. 17.
    S. DEB, S. ABDULGHANI and J. C. BEHIRI, Biomaterials 23 (2002) 3387CrossRefGoogle Scholar
  18. 18.
    S. ABDULGHANI, Thesis title:“An investigation into the mechanical and biological properties of acrylic bone cement containing triphenyl bismuth (TPB) as an alternative radiopacifier” Department of Materials, Queen Mary, University of London (2003)Google Scholar
  19. 19.
    M. P. GINEBRA, L. ALBUIXECH, E. FERNANDEZ-BARRAGAN, C. APARICIO, F. J. GIL, R. J. SAN, B. VAZQUEZ and J. A. PLANELL, Biomaterials 23 (2002) 1873CrossRefGoogle Scholar
  20. 20.
    J. GRAHAM, L. PRUITT, M. RIES and N. GUNDIAH, J. Arthroplasty 15 (2000) 1028CrossRefGoogle Scholar
  21. 21.
    K. F. HUGHES, M. D. RIES and L. A. PRUITT, J. Biomed. Mater. Res. A 65 (2003) 126CrossRefGoogle Scholar
  22. 22.
    N. J. DUNNE and J. F. ORR, J. Mater. Sci Mater. Med. 13 (2002) 17CrossRefGoogle Scholar
  23. 23.
    S. TOKSVIG-LARSEN, H. FRANZEN and L. RYD, Acta Orthop. Scand. 62 (1991) 102CrossRefGoogle Scholar
  24. 24.
    K.-D. KÜHN, in “Bone Cements” (Springer-Verlag, Berlin Heidelberg, 2000) Google Scholar
  25. 25.
    G. BAROUD, M. SAMARA, T. STEFFEN, J. Biomed. Mater. Res. 68B (2004) 112CrossRefGoogle Scholar
  26. 26.
    G. G. ODIEN, in “Principles of Polymerization” (John Wiley & Sons, Inc, New York, 1981) Google Scholar
  27. 27.
    J. M. YANG, Biomaterials 18 (1997) 1293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Fred Kjellson
    • 1
    Email author
  • Saba Abdulghani
    • 1
  • K. E. Tanner
    • 1
    • 2
  • Ian D. McCarthy
    • 1
  • Lars Lidgren
    • 1
  1. 1.Department of OrthopaedicsLund University HospitalLundSweden
  2. 2.Department of MaterialsQueen Mary, University of LondonLondonUK

Personalised recommendations