Bone tissue reaction to Ti–48Al–2Cr–2Nb (at.%) in a rodent model: a preliminary SEM study

  • Diego F. Castañeda-Muñoz
  • Paul Antony SundaramEmail author
  • Norman Ramírez


A variety of metals have been used to replace the skeletal framework of human beings. Gamma titanium aluminide (γTiAl) has been recently developed as a prospective material for turbine applications. In this preliminary study, the potential of γTiAl as a biomaterial was evaluated using an in vivo rat model. Sprague–Dawley rats were implanted with γTiAl cylinders in the femur and observed for an experimental period lasting up to 180 days. The rats were sacrificed after periods of 45, 90 and 180 days. The femurs with the γTiAl implants were extracted and examined using scanning electron microscopy (SEM). Normal bone growth processes were observed as early as 45 days after γTiAl cylinder implantation. No signs of rejection of the implant metal were observed. In fact, a layered bone growth was observed on the implant metal surface. The bone–metal interface showed signs of tissue growth from original bone to the metal surface. γTiAl appears to elicit a normal bone tissue reaction and hence, has potential as a metallic implant material.


Bone Tissue Foreign Body Reaction Metal Interface Compact Bone Cobalt Chromium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Ponce School of Medicine for supplying the Sprague–Dawley rats and providing facilities for the surgical procedures and post-operative care of the rats. The SEM facilities at the Biology Department, University of Puerto Rico-Mayaguez were utilized.


  1. 1.
    H. J. BREME and V. BIELE, “Metallic biomaterials. Handbook of biomaterial properties” (Chapman & Hall, London, 1998), p. 135Google Scholar
  2. 2.
    J. CHARNLEY, Physiotherapy 54 (1968) 406Google Scholar
  3. 3.
    J. J. JACOBS, A. K. SKIPOR, P. F. DOORN, P. CAMPBELL, T. P. SCHMALZRIED, J. BLACK and H. C. AMSTUTZ, Clin. Orthop. 329 (1996) S256CrossRefGoogle Scholar
  4. 4.
    S. HIERHOLZER, G. HIERHOLZER, K. H. SAUER and R. S. PATTERSON, Arch. Orthop. Trauma Surg. 102 (1984) 198CrossRefGoogle Scholar
  5. 5.
    P. R. BOUCHARD, J. BLACK, B. A. ALBRECHT, R. E. KADERLY, J. O. GALANTE and B. U. PAULI, J. Biomed. Mater. Res. 32 (1996) 37CrossRefGoogle Scholar
  6. 6.
    M. ROCK, “Handbook of biomaterial properties” (Chapman & Hall, London, 1998), p. 528Google Scholar
  7. 7.
    F. W. SUNDERMANN, Ann. Clin. Lab. Sci. 7 (1977) 377Google Scholar
  8. 8.
    P. I. BRÄNEMARK, R. ADELL, U. BREINE, B. O. HANSSON, J. LINDSTRÖM and A. OHLSSON, Scand. J. Plast. Reconstructr. Surg. 3 (1969) 81Google Scholar
  9. 9.
    T. ALBREKTSSON, P. I. BRÄNEMARK, H. A. HANSSON and J. LINDSTRÖM, Acta Orthop. Scand. 52 (1981) 155CrossRefGoogle Scholar
  10. 10.
    M. NIINOMI, Mater. Sci. Eng. A 243 (1998) 231CrossRefGoogle Scholar
  11. 11.
    R. J. SOLAR, S. R. POLLACK and E. KOROSTOFF, J. Biomed. Mater. Res. 13 (1979) 217CrossRefGoogle Scholar
  12. 12.
    H. A. Lipsitt, in “Mater. Res. Soc. Symp. Proc.”, edited by C. C. KOCH, C. T. LIU and N. S. STOLOFF, 39 (1985) 351Google Scholar
  13. 13.
    Y. W. KIM, J. Metals 41 (1989) 24Google Scholar
  14. 14.
    C. M. AUSTIN, T. J. KELLY, K. G. MCALLISTER and J. C. CHESNUTT, ISSI-2, (TMS, Warrendale, PA, 1997), p. 413Google Scholar
  15. 15.
    D. RUGG, in “Gamma Titanium Aluminides”, edited by Y. W. KIM, D. M. DIMIDUK and M. H. LORETTO (TMS, Warrendale, PA, 1999), p. 11Google Scholar
  16. 16.
    P. BARTOLOTTA and D. KRAUSE, in “Gamma Titanium Aluminides”, edited by Y. W. KIM, D. M. DIMIDUK and M. H. LORETTO (TMS, Warrendale, PA, 1999), p. 3Google Scholar
  17. 17.
    V. GÜTHER, A. OTTO, H. KESTLER and H. CLEMENS, in “Gamma Titanium Aluminides”, edited by Y. W. KIM, D. M. DIMIDUK and M. H. LORETTO (TMS, Warrendale, PA, 1999), p. 225Google Scholar
  18. 18.
    P. MCQUAY, R. SIMPKINS, Y. SEO and T. BIELER, in “Gamma Titanium Aluminides”, edited by Y. W. KIM, D. M. DIMIDUK and M. H. LORETTO (TMS, Warrendale, PA, 1999), p. 197Google Scholar
  19. 19.
    D. F. WILLIAMS, J. BLACK and P. J. DOHERTY, in “Biomaterial-tissue interfaces”, Vol. 10, edited by P. J. DOHERTY, R. C. WILLIAMS, D. F WILLIAMS and A. J. C. LEE (Elsevier, Amsterdam, 1992), p. 525Google Scholar
  20. 20.
    W. S. S. JEE, “The skeletal tissues. Histology: Cell and Tissue Biology” (Elsevier Biomedical, New York, 1983), p. 212Google Scholar
  21. 21.
    R. R. TARR and D. A. WISS, Clin. Orthop. 212 (1986) 10Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Diego F. Castañeda-Muñoz
    • 1
  • Paul Antony Sundaram
    • 1
    Email author
  • Norman Ramírez
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of Puerto RicoMayaguezUSA
  2. 2.Department of OrthopedicsUniversity of Puerto RicoSan JuanUSA
  3. 3.Department of Pediatric OrthopedicsHospital La ConcepciónSan GermanUSA

Personalised recommendations