Analysis of the effects of surface treatments on nickel release from nitinol wires and their impact on candidate gene expression in endothelial cells

  • E. McLucas
  • Y. Rochev
  • W. M. Carroll
  • T. J. SmithEmail author


Nitinol has many applications in the medical device industry, however the large amount of nickel, a known allergen and carcinogen remains a serious concern. Studies have already shown that nickel ions induce the differential expression of a range of genes, including cell adhesion molecules. This study sought to determine the level of nickel ions released from nitinol wires that had been surface treated by etching and mechanically polishing or etching and pickling compared to untreated wires and determine the biological impact of the wires on human umbilical vein endothelial cells (HUVECs) at the transcriptional level by real-time PCR. The four different wire types were incubated in media and the amount of nickel eluted after 24, 48 and 72 h was determined. HUVECs were then cultured and incubated with the four different wire types for 24 h. Cells were harvested, RNA isolated and real-time PCR was carried out to measure the expression levels of ICAM-1, VCAM-1 and E-selectin, three known inflammatory mediators, compared to control cells. E-selectin, a marker of endothelial cell injury and activation was found to be significantly up-regulated in cells incubated with wires that released the highest amount of nickel ions. Nickel ions are released from nitinol wires with certain surface characteristics and these ions have a biological effect on HUVECs in vitro.


Human Umbilical Vein Endothelial Cell Stent Implantation cDNA Copy Nitinol Wire Wire Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the Higher Education Authority [22] Programme for Research in Third Level Institutions (PRTLI). Materials were kindly provided by Fort Wayne Metals. Assistance with real-time studies provided by David Connolly and Paul Hynes is gratefully acknowledged.


  1. 1.
    E. J. TOPOL and P. W. SERRUYS, Circulation 98(17) (1998) 1802–1820Google Scholar
  2. 2.
    F. R. AMIN, M. YOUSUFUDDIN, R. STABLES, A. S. KURBAAN, J. CLAGUE, A. J. S. COATS and U. SIGWART, Int. J. Cardiol. 71 (1999) 121–127Google Scholar
  3. 3.
    O. F. BERTRAND, R. SIPEHIA, R. MONGRAIN, J. RODES, J. C. TARDIF, L. BILODEAU, G. COTE and M. G. BOURASSA, J. Am. Coll. Cardiol. 32(3) (1998) 562–571CrossRefGoogle Scholar
  4. 4.
    L. J. FELDMAN, M. MAZIGHI, A. SCHEUBLE, J. F. DEUX, E. DE BENEDETTI, C. BADIER-COMMANDER, E. BRAMBILLA, D. HENIN, P. G. STEG and M. P. JACOB, Circulation 103(25) (2001) 3117–3122Google Scholar
  5. 5.
    O. F. BERTRAND, R. SIPHEIA, R. MONGRAIN, J. RODES, J. C. TARDIF, L. BILODEAU, G. COTES and M. G. BOURASSA, J. Am. Coll. Cardiol. 32(3) (1998) 562–571CrossRefGoogle Scholar
  6. 6.
    R. KOSTER, D. VIELUF, M. KIEHN, M. SOMMERAUER, J. KAHLER, S. BALDUS, T. MEINERTZ and C. W. HAMM, Lancet 356(9245) (2000) 1895–1897CrossRefGoogle Scholar
  7. 7.
    C. C. SHIH, C.M. SHIH, Y. Y. SU, M. S. CHANG and S. J. LIN, Appl. Surf. Sci. (2003)Google Scholar
  8. 8.
    D. STOECKEL, A. PELTON and T. DUERIG, Eur. Radiol. 14(2) (2004) 292–301CrossRefGoogle Scholar
  9. 9.
    N. MORGAN, Mater. Sci. Eng. A 378 (2004) 16–23CrossRefGoogle Scholar
  10. 10.
    D. J. WEVER, A. G. VELDHUIZEN, M. M. SANDERS, J. M. SCHAKENRAAD and J. R. VAN HORN, Biomaterials 18(16) (1997) 1115–1120CrossRefGoogle Scholar
  11. 11.
    M. LAMBERTI, B. PERFETTO, T. COSTABILE, N. CANOZO, A. BARONI, F. LIOTTI, N. SANNOLO and M. GIULIANO, Toxicol. Appl. Pharmacol. 195(3) (2004) 321–330CrossRefGoogle Scholar
  12. 12.
    D. BEYERSMANN, Toxicol. Lett. 127(1–3) (2002) 63–68CrossRefGoogle Scholar
  13. 13.
    M. GOEBELER, G. MEINARDUS-HAGER, J. ROTH, S. GOERDT and C. SORG, J. Invest. Dermatol. 100(6) (1993) 759–765CrossRefGoogle Scholar
  14. 14.
    W. CARROLL, Y. ROCHEV, B. CLARKE and M. BURKE, Influence of nitinol wire surface preparation procedures on cell surface interactions and polymer coating adherence. in Materials & Processes for Medical Devices (California, USA: Anaheim, 2003)Google Scholar
  15. 15.
    F. R. PU, R. L. WILLIAMS, T. K. MARKKULA and J. A. HUNT, Biomaterials 23(11) (2002) 2411–2428CrossRefGoogle Scholar
  16. 16.
    E. ATALAR, K. AYTEMIR, I. HAZNEDAROGLU, N. OZER, K. OVUNC, S. AKSOYEK, S. KES, S. KIRAZLI and F. OZMEN, Int. J. Cardiol. 78(1) (2001) 69–73CrossRefGoogle Scholar
  17. 17.
    J. J. BELCH, J. W. SHAW, G. KIRK, M. MCLAREN, R. ROBB, C. MAPLE and P. MORSE, Circulation 95(8) (1997) 2027–2031Google Scholar
  18. 18.
    N. K. GHAISAS, C. N. SHAHI, B. FOLEY, M. GOGGINS, P. CREAN, A. KELLY, D. KELLEHER and M. WALSH, Am. J. Cardiol. 80(5) (1997) 617–619CrossRefGoogle Scholar
  19. 19.
    M. KILICKAP, E. TUTAR, O. AYDINTUG, G. PAMIR, C. EROL, H. TUTKAK and D. ORAL, Int. J. Cardiol. 93(1) (2004) 13–18CrossRefGoogle Scholar
  20. 20.
    R. L. MESSER, J. C. WATAHA, J. B. LEWIS, P. E. LOCKWOOD, G. B. CAUGHMAN and W. Y. TSENG, J. Long Term Eff. Med. Implants 15(1) (2005) 39–47CrossRefGoogle Scholar
  21. 21.
    J. C. WATAHA, P. E. LOCKWOOD, M. MAREK and M. GHAZI, J. Biomed. Mater. Res. 45(3) (1999) 251–257CrossRefGoogle Scholar
  22. 22.
    D. WHITCOMBE, J. THEAKER, S. P. GUY, T. BROWN and S. LITTLE, Nat. Biotechnol. 17(8) (1999) 804–807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • E. McLucas
    • 1
  • Y. Rochev
    • 1
  • W. M. Carroll
    • 1
    • 2
  • T. J. Smith
    • 1
    Email author
  1. 1.National Centre for Biomedical Engineering ScienceNational University of IrelandGalwayIreland
  2. 2.Department of ChemistryNational University of IrelandGalwayIreland

Personalised recommendations