Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides

  • Lucie BacakovaEmail author
  • Elena Filova
  • Dana Kubies
  • Ludka Machova
  • Vladimir Proks
  • Vesela Malinova
  • Vera Lisa
  • Frantisek Rypacek


The surface of poly(l-lactide) (PLLA) films deposited on glass coverslips was modified with poly(dl-lactide) (PDLLA), or 1:4 mixtures of PDLLA and PDLLA-b-PEO block copolymers, in which either none, 5% or 20% of the copolymer molecules carried a synthetic extracellular matrix-derived ligand for integrin adhesion receptors, the GRGDSG oligopeptide, attached to the end of the PEO chain. The materials, perspective for vascular tissue engineering, were seeded with rat aortic smooth muscle cells (11,000 cells/cm2) and the adhesion, spreading, DNA synthesis and proliferation of these cells was followed on inert and bioactive surfaces. In 24-h-old cultures in serum-supplemented media, the number of cells adhering to the PDLLA-b-PEO copolymer was almost eight times lower than that on the control PDLLA surface. On the surfaces containing 5% and 20% GRGDSG-PEO-b-PDLLA copolymer, the number of cells increased 6- and 3-fold respectively, compared to the PDLLA-b-PEO copolymer alone. On PDLLA-b-PEO copolymer alone, the cells were typically round and non-spread, whereas on GRGDSG-modified surfaces the cell spreading areas approached those found on PDLLA, reaching values of 991 μm2 and 611 μm2 for 5% and 20% GRGDSG respectively, compared to 958 μm2 for PDLLA. The cells on GRGDSG-grafted copolymers were able to form vinculin-containing focal adhesion plaques, to synthesize DNA and even proliferate in a serum-free medium, which indicates specific binding to the GRGDSG sequences through their adhesion receptors.


Vascular Smooth Muscle Cell PLLA Polylactide Adhesion Receptor Amphiphilic Block Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Academy of Sciences of the Czech Republic (grant No. IAA4050202). We also thank Mrs. Ivana Zajanová for her excellent technical assistance. Mr. Benjamin J. Watson-Jones (Preklad Centrum, Prague) and Mr. Robin Healey (Czech Technical University, Prague) gratefully are acknowledged for the language revision of the manuscript.


  1. 1.
    L. BACAKOVA, E. FILOVA, F. RYPACEK, V. SVORCIK and V. STARY, Physiol. Res. 53(1) (2004) S35Google Scholar
  2. 2.
    G. ALTANKOV, V. THOM, T. GROTH, K. JANKOVA, G. JONSSON and M. ULBRICHT, J. Biomed. Mater. Res. 52 (2000) 219CrossRefGoogle Scholar
  3. 3.
    H. SHIN, S. JO and A. G. MIKOS, Biomaterials 24 (2003) 4353CrossRefGoogle Scholar
  4. 4.
    D. L. HERN and J. A. HUBBELL, J. Biomed. Mater. Res. 39 (1998) 266CrossRefGoogle Scholar
  5. 5.
    F. RYPACEK, Polymer-Based Systems on Tissue Engineering, Replacement and Regeneration (Dordrecht-Boston-London: Kluwer Acad. Publishers, 2002), vol. 86Google Scholar
  6. 6.
    M. MIZUTANI, S. C. ARNOLD and T. MATSUDA, Biomacromolecules 3 (2002) 668CrossRefGoogle Scholar
  7. 7.
    V. PROKS, L. MACHOVA, S. POPELKA and F. RYPACEK, Adv. Exp. Med. Biol. 534 (2003) 191Google Scholar
  8. 8.
    S. A. DELONG, J. J. MOON and J. L. WEST, Biomaterials 26 (2005) 3227CrossRefGoogle Scholar
  9. 9.
    A. PARK, B. WU and L. G. GRIFFITH, J. Biomater. Sci. Polym. Ed. 9 (1998) 89Google Scholar
  10. 10.
    S. M. CANNIZZARO, R. F. PADERA, R. LANGER, R. A. ROGERS, F. E. BLACK, M. C. DAVIES, S. J. TENDER and K. M. SHAKESHEFF, Biotechnol. Bioeng. 58 (1998) 529CrossRefGoogle Scholar
  11. 11.
    E. S. CARLISLE, M. R. MARIAPPAN, K. D. NELSON, B. E. THOMAS, R. B. TIMMONS, A. CONSTANTINESCU, R. C. EBERHART and P. E. BANKEY, Tissue Eng. 6 (2000) 45CrossRefGoogle Scholar
  12. 12.
    B. K. MANN, A. S. GOBIN, A. T. TSAI, R. H. SCHMEDLEN and J. L. WEST, Biomaterials 22 (2001) 3045CrossRefGoogle Scholar
  13. 13.
    L. BACAKOVA, V. LISA, L. KUBINOVA, J. WILHELM, J. NOVOTNA, A. ECKHART and J. HERGET Virchow’s Arch. 440 (2002) 50CrossRefGoogle Scholar
  14. 14.
    D. KUBIES, L. MACHOVA, E. BRYNDA, J. LUKAS and F. RYPACEK J. Mater. Sci. Mater. Med. 14 (2003) 143CrossRefGoogle Scholar
  15. 15.
    F. RYPACEK, L. MACHOVA, R. KOTVA and V. SKARDA, Polym. Mater. Sci. Eng. 84 (2001) 817Google Scholar
  16. 16.
    A. ATALA and R. P. LANZA (Eds.), Methods in Tissue Engineering (Academic Press, 2002)Google Scholar
  17. 17.
    D. J. MOONEY, C. L. MAZZONI, C. BREUER, K. McNAMARA, D. HERN, J. P. VACANTI and R. Langer, Biomaterials 17 (1996) 115CrossRefGoogle Scholar
  18. 18.
    D. S. W. BENOIT and K. S. ANSETH, Biomaterials 26 (2005) 5209CrossRefGoogle Scholar
  19. 19.
    B. T. HOUSEMAN and M. MRKSICH, Biomaterials 22 (2001) 943CrossRefGoogle Scholar
  20. 20.
    D. R. JUNG, R. KAPUR, T. ADAMS, K. A. GIULIANO, M. MRKSICH, H. G. CRAIGHEAD and D. L. Taylor, Crit. Rev. Biotechnol. 21 (2001) 111CrossRefGoogle Scholar
  21. 21.
    R. GLASS, M. Arnold, J. BLUMMEL, A. KULLER, M. MOLLER and J. P. SPATZ, Adv. Funct. Mater. 13 (2003) 569CrossRefGoogle Scholar
  22. 22.
    J. H. Lee, H. B. Lee and J. D. ANDRADE, Prog. Polym. Sci. 20 (1995) 1043CrossRefGoogle Scholar
  23. 23.
    D. LECKBAND, S. SHETH and A. HALPERIN, J. Biomater. Sci. Polym. Ed. 10 (1999) 1125Google Scholar
  24. 24.
    S. POPELKA, L. MACHOVA, F. RYPACEK, M. STEPANEK, P. MATEJICEK and K. PROCHAZKA, Collect. Czech. Chem. Commun. 70 (2005) 1811CrossRefGoogle Scholar
  25. 25.
    J. H. KIM and S. C. KIM, Biomaterials 23 (2002) 2015CrossRefGoogle Scholar
  26. 26.
    M. H. FITTKAU, P. ZILLA, D. BEZUIDENHOUT, M. P. LUTOLF, P. HUMAN, J. A. HUBBELL and N. DAVIES, Biomaterials 26 (2005) 167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lucie Bacakova
    • 1
    Email author
  • Elena Filova
    • 1
  • Dana Kubies
    • 2
  • Ludka Machova
    • 2
  • Vladimir Proks
    • 2
  • Vesela Malinova
    • 2
  • Vera Lisa
    • 1
  • Frantisek Rypacek
    • 2
  1. 1.Institute of PhysiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations