Titanium dioxide (TiO2) nanoparticles filled poly(d,l lactid acid) (PDLLA) matrix composites for bone tissue engineering

  • L.-C. Gerhardt
  • G. M. R. Jell
  • A. R. Boccaccini
Article

Abstract

Titanium dioxide (TiO2) nanoparticles were investigated for bone tissue engineering applications with regard to bioactivity and particle cytotoxicity. Composite films on the basis of poly(d,l lactid acid) (PDLLA) filled with 0, 5 and 30 wt% TiO2 nanoparticles were processed by solvent casting. Bioactivity, characterised by formation of hydroxyapatite (HA) on the materials surface, was investigated for both the free TiO2 nanoparticles and PDLLA/TiO2 composite films upon immersion in supersaturated simulated body fluid (1.5 SBF) for up to 3 weeks. Non-stoichiometric HA nanocrystals (ns-HA) with an average diameter of 40 nm were formed on the high content (30 wt% TiO2) composite films after 2 weeks of immersion in 1.5 SBF. For the pure PDLLA film and the low content composite films (5 wt% TiO2) trace amounts of ns-HA nanocrystals were apparent after 3 weeks. The TiO2 nanopowder alone showed no bioactivity. The effect of TiO2 nanoparticles (0.5–10,000 μg/mL) on MG-63 osteoblast-like cell metabolic activity was assessed by the MTT assay. TiO2 particle concentrations of up to 100 μg/mL had no significant effect on MG-63 cell viability.

Notes

Acknowledgments

The authors gratefully acknowledge the experimental assistance and expertise of I. Notingher, M. Ardakani, M. Kershaw, R. Chater (all Department of Materials, Imperial College London, UK). The authors would also like to thank T. Kasuga (Department of Materials Science and Engineering, Nagoya Institute for Technology, Japan) for helpful discussions as well as Professor L.L. Hench (Department of Materials, Imperial College London, UK) for funding the cell biological experiments. Thanks are also due to the German Academic Exchange Service (DAAD) for funding provided for L.-C. Gerhardt.

References

  1. 1.
    C. E. HOLY, M. S. SHOICHET and J. E. DAVIES, J. Biomed. Mater. Res. 51 (2000) 376CrossRefGoogle Scholar
  2. 2.
    J. M. TABOAS, R. D. MADDOX, P. H. KREBSBACH and S. J. HOLLISTER, Biomaterials 24/1 (2003) 181CrossRefGoogle Scholar
  3. 3.
    I. D. THOMPSON and L. L. HENCH, Proc. Inst. Mech. Eng. [H] 212/2 (1998) 127Google Scholar
  4. 4.
    S. RAMAKRISHNA, J. MAYER, E. WINTERMANTEL and K. W. LEONG, Comp. Sci. Technol. 61/9 (2001) 1189CrossRefGoogle Scholar
  5. 5.
    A. R. BOCCACCINI and V. MAQUET, Comp. Sci. Technol. 63/16 (2003) 2417CrossRefGoogle Scholar
  6. 6.
    C. LOTY, J. M. SAUTIER, H. BOULEKBACHE, T. KOKUBO, H. M. KIM and N. FORST, J. Biomed. Mater. Res. 49 (2000) 423CrossRefGoogle Scholar
  7. 7.
    L. L. HENCH and J. K. WEST, Life Chem. Rep. 13 (1996) 187Google Scholar
  8. 8.
    J. R. JONES and L. L. HENCH, Mat. Sci. Technol. 17/8 (2001) 891Google Scholar
  9. 9.
    T. W. BAUER, Clin. Orthop. 405 (2002) 138CrossRefGoogle Scholar
  10. 10.
    T. W. BAUER and J. SCHILS, Skeletal Radiol. 28/9 (1999) 483CrossRefGoogle Scholar
  11. 11.
    P. A. REVELL, N. AL-SAFFAR and A. KOBAYASHI, Proc. Inst. Mech. Eng. [H] 211 (1997) 187Google Scholar
  12. 12.
    R. W. SIEGEL, Sci. Am. 275 (1996) 42CrossRefGoogle Scholar
  13. 13.
    T. J. WEBSTER, Am. Ceram. Soc. Bull. 82/6 (2003) 23Google Scholar
  14. 14.
    T. J. WEBSTER, R. W. SIEGEL and R. BIZIOS, Biomaterials 20/13 (1999) 1221CrossRefGoogle Scholar
  15. 15.
    J. K. SAVAIANO and T. J. WEBSTER, Biomaterials 25/7–8 (2004) 1205CrossRefGoogle Scholar
  16. 16.
    S. KAY, A. THAPA, K. M. HABERSTROH and T. J. WEBSTER, Tissue Eng. 8/5 (2002) 753CrossRefGoogle Scholar
  17. 17.
    A. YAMAMOTO, R. HONMA, M. SUMITA and T. HANAWA, J. Biomed. Mater. Res. 68A/2 (2004) 244CrossRefGoogle Scholar
  18. 18.
    T. J. WEBSTER, C. ERGUN, R. H. DOREMUS, R. W. SIEGEL and R. BIZIOS, Biomaterials 21/17 (2000) 1803CrossRefGoogle Scholar
  19. 19.
    T. J. WEBSTER, C. ERGUN, R. H. DOREMUS, R. W. SIEGEL and R. BIZIOS, J. Biomed. Mater. Res. 51(3) (2000) 475CrossRefGoogle Scholar
  20. 20.
    L. G. GUTWEIN and T. J. WEBSTER, Biomaterials 25/18 (2004) 4175CrossRefGoogle Scholar
  21. 21.
    P. ZHU, Y. MASUDA and K. KOUMOTO, Biomaterials 25/17 (2004) 3915CrossRefGoogle Scholar
  22. 22.
    R. ZHANG and P. X. MA, J. Biomed. Mater. Res. 45/4 (1999) 285CrossRefGoogle Scholar
  23. 23.
    X. YUAN, A. F. MAK and J. LI, J. Biomed. Mater. Res. 57/1 (2001) 140CrossRefGoogle Scholar
  24. 24.
    H. K. VARMA, Y. YOKOGAWA, F. F. ESPINOSA, Y. KAWAMOTO, K. NISHIZAWA, F. NAGATA and T. KAMEYAMA, Biomaterials 20/9 (1999) 879CrossRefGoogle Scholar
  25. 25.
    A. R. BOCCACCINI, L.-C. GERHARDT, S. REBELIN and J. J. BLAKER, Composites Part A 36/6 (2005) 721CrossRefGoogle Scholar
  26. 26.
    M. ETTLINGER, Fine Particles, in Technical Bulletin Pigments, No. 80. Degussa AG, Inorganic Chemical Products Division: Düsseldorf, pp. 1–26Google Scholar
  27. 27.
    T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24/6 (1990) 721CrossRefGoogle Scholar
  28. 28.
    T. MOSMANN, J. Immunol. Methods 65/1–2 (1983) 55CrossRefGoogle Scholar
  29. 29.
    F. L. MATTHEWS and R. D. RAWLINGS, Composite materials: Engineering and science, ed. Woodhead Publishing Ltd, Cambridge, UK (1999), pp. 342–354Google Scholar
  30. 30.
    G. PENEL, G. LEROY, C. REY and E. BRES, Calcif. Tissue Int. 63/6 (1998) 475CrossRefGoogle Scholar
  31. 31.
    G. PENEL, G. LEROY, C. REY, B. SOMBRET, J. P. HUVENNE and E. BRES, J. Mater. Sci. Mater. Med. 8/5 (1997) 271CrossRefGoogle Scholar
  32. 32.
    G. KISTER, G. CASSANAS and M. VERT, Polymer 39/15 (1998) 3335CrossRefGoogle Scholar
  33. 33.
    P. TADDEI, A. TINTI and G. FINI, J. Raman Spectr. 32/8 (2001) 619CrossRefGoogle Scholar
  34. 34.
    ICDD, Powder Diffraction File, Inorganic Volume: Sets 9, 21, International Centre for Diffraction Data, I. Editor, ed., Swarthmore, Pennsylvania, USA 1967 (set 9), 1980 (set 21), pp. 9–432, 21–1271, 21–1276Google Scholar
  35. 35.
    A. RAMILA and M. VALLET-REGI, Biomaterials 22/16 (2001) 2301CrossRefGoogle Scholar
  36. 36.
    W. L. MURPHY, D. H. KOHN and D. J. MOONEY, J. Biomed. Mater. Res. 50/1 (2000) 50CrossRefGoogle Scholar
  37. 37.
    H. P. BOEHM, Discuss. Faraday Soc. 52 (1971) 264CrossRefGoogle Scholar
  38. 38.
    H. MAEDA, T. KASUGA and M. NOGAMI, J. Eur. Ceram. Soc. 24/7 (2004) 2125CrossRefGoogle Scholar
  39. 39.
    T. PELTOLA, M. JOKINEN, H. RAHIALA, E. LEVANEN, J. B. ROSENHOLM, I. KANGASNIEMI and A. YLI-URPO, J. Biomed. Mater. Res. 44/1 (1999) 12CrossRefGoogle Scholar
  40. 40.
    M. UCHIDA, H. M. KIM, T. KOKUBO, S. FUJIBAYASHI and T. NAKAMURA, J. Biomed. Mater. Res. 64A/1 (2003) 164CrossRefGoogle Scholar
  41. 41.
    X. ZHENG, M. HUANG and C. DING, Biomaterials 21/8 (2000) 841CrossRefGoogle Scholar
  42. 42.
    J. D. PASTERIS, B. WOPENKA, J. J. FREEMAN, K. ROGERS, E. VALSAMI-JONES, J. A. M. VAN DER HOUWEN and M. J. SILVA, Biomaterials 25/2 (2004) 229CrossRefGoogle Scholar
  43. 43.
    W. HEIDEMANN, S. JESCHKEIT, K. RUFFIEUX, J. H. FISCHER, M. WAGNER, G. KRUGER, E. WINTERMANTEL and K. L. GERLACH, Biomaterials 22/17 (2001) 2371CrossRefGoogle Scholar
  44. 44.
    J. E. BERGSMA, W.C. DE BRUIJN, F. R. ROZEMA, R. R. BOS and G. BOERING, Biomaterials 16/1 (1995) 25CrossRefGoogle Scholar
  45. 45.
    C. DURUCAN and P. W. BROWN, Adv. Eng. Mater. 3 (2001) 227CrossRefGoogle Scholar
  46. 46.
    A. M. GATTI and F. RIVASI, Biomaterials 23/11 (2002) 2381CrossRefGoogle Scholar
  47. 47.
    K. PETERS, R. E. UNGER, C. J. KIRKPATRICK, A. M. GATTI and E. MONARI, J. Mater. Sci. Mater. Med. 15/4 (2004) 321CrossRefGoogle Scholar
  48. 48.
    K. DONALDSON, P. H. BESWICK and P. S. GILMOUR, Toxicol. Lett. 88/1–3 (1996) 293CrossRefGoogle Scholar
  49. 49.
    T. J. WEBSTER, C. ERGUN, R. H. DOREMUS, R. W. SIEGEL and R. BIZIOS, Biomaterials 22/11 (2001) 1327CrossRefGoogle Scholar
  50. 50.
    J. E. NEVELOS, E. INGHAM, C. DOYLE, J. FISHER and A. B. NEVELOS, Biomaterials 20/19 (1999) 1833CrossRefGoogle Scholar
  51. 51.
    D. GRANCHI, G. CIAPETTI, I. AMATO, S. PAGANI, E. CENNI, L. SAVARINO, S. AVNET, J. L. PERIS, A. PELLACANI, N. BALDINI and A. GIUNTI, Biomaterials 25/18 (2004) 4037CrossRefGoogle Scholar
  52. 52.
    M. A. GERMAIN, A. HATTON, S. WILLIAMS, J. B. MATTHEWS, M. H. STONE, J. FISHER and E. INGHAM, Biomaterials 24/3 (2003) 469CrossRefGoogle Scholar
  53. 53.
    C. H. LOHMANN, D. D. DEAN, G. KOSTER, D. CASASOLA, G. H. BUCHHORN, U. FINK, Z. SCHWARTZ and B. D. BOYAN, Biomaterials 23/8 (2002) :1855CrossRefGoogle Scholar
  54. 54.
    P. H. WOOLEY and E. M. SCHWARZ, Gene Ther. 11/4 (2004):402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • L.-C. Gerhardt
    • 1
    • 2
    • 3
  • G. M. R. Jell
    • 1
  • A. R. Boccaccini
    • 1
  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Lehrstuhl für MedizintechnikTU MunichGarching bei MunchenGermany
  3. 3.Laboratory for Protection and PhysiologyEMPA, Materials Science and TechnologySt. GallenSwitzerland

Personalised recommendations