Generation of hydroxyapatite patterns by electrophoretic deposition

  • Seiji Yamaguchi
  • Takeshi Yabutsuka
  • Mitsuhiro Hibino
  • Takeshi Yao
Article

Abstract

Hydroxyapatite (HAp) patterns with distinct boundaries were generated by electrophoretic deposition (EPD) utilizing an insulating mask that partially blocks the electric field. For the EPD process, we selected two types of mask: a polytetrafluoroethylene (PTFE) board with holes and a resist pattern. A porous PTFE film, which differed from the mask PTFE, was employed as a substrate and attached to the mask. EPD was performed with a suspension of wollastonite particles in acetone, which were deposited on the substrate in the form of the patterned mask. The deposited wollastonite particles induced HAp patterns during a soak in simulated body fluid (SBF). As a result, minute HAp patterns, such as dots, lines, and corners were fabricated on the porous PTFE substrate with a minimum line width of about 100 μm.

References

  1. 1.
    H. LIAO, A. S. ANDERSSON et al., Biomaterials 24 (2003) 649CrossRefGoogle Scholar
  2. 2.
    F. PFEIFFER, B. HERZOG et al., Microelectron. Eng. 67, (2003) 913CrossRefGoogle Scholar
  3. 3.
    L. F. COOPER, T. MASUDA et al., Int. J. Oral. Maxillofac. Implants. 13, (1998) 163Google Scholar
  4. 4.
    J. E. DAVIES, Anat. Rec. 245 (1996) 426CrossRefGoogle Scholar
  5. 5.
    T. MASUDA, P. K. YLIHEIKKILA et al., Int. J. Oral. Maxillofac. Implants. 13, (1998) 17Google Scholar
  6. 6.
    J. COOPER, Y. WANG et al., Electrophoresis. 25 (2004) 3913CrossRefGoogle Scholar
  7. 7.
    P. J. OBEID, T. K. CHRISTOPOULOS et al., Anal. Chem. 75 (2003) 288CrossRefGoogle Scholar
  8. 8.
    G. H. W. SANDERS and A. MANZ, TRAC Trends Anal. Chem. 19 (2000) 364CrossRefGoogle Scholar
  9. 9.
    R. GOMEZ, R. BASHIR et al., Biomed. Microdevices. 3 (2001) 201CrossRefGoogle Scholar
  10. 10.
    I. R. LAUKS, Acc. Chem. Res. 31 (1998) 317CrossRefGoogle Scholar
  11. 11.
    J. KR¨UGER, K. SINGH et al., J. Micromech. Microeng. 12 (2002) 486CrossRefGoogle Scholar
  12. 12.
    J. VOLDMAN, M. L. GRAY et al., Annu. Rev. Biomed. Eng. 1 (1999) 401CrossRefGoogle Scholar
  13. 13.
    A. KOLCHINSKY and A. D. MIRZABEKOV, Hum. Mutat. 19 (2002) 343CrossRefGoogle Scholar
  14. 14.
    W. KUSNEZOW, Y. V. SYAGAILO et al., Expert Rev. Mol. Diagn. 6 (2006) 111CrossRefGoogle Scholar
  15. 15.
    M. KUSUNOKI, M. KAWASHITA et al., Jpn. J. Appl. Phys. 44(10) (2005) 326CrossRefGoogle Scholar
  16. 16.
    P. ZHU, Y. MASUDA and K. KOUMOTO, Biomaterials. 25(17) (2004) 3915CrossRefGoogle Scholar
  17. 17.
    G. YIN, Z. LIU, J. ZHAN, F. DING and N. YUAN, Chem. Eng. J. 87(2) (2002) 181CrossRefGoogle Scholar
  18. 18.
    W. F. PICKARD, J. Electorochem. Soc. 115 (1968) 105CrossRefGoogle Scholar
  19. 19.
    P. SARKAR and P. S. NICHOLSON, J. Ame. Ceram. Soc. 79(8) (1996) 1987CrossRefGoogle Scholar
  20. 20.
    T. YAO, N. OZAWA, Y. IDETA and K. SHIMIZU, Bioceramics. 15 (2003) 67Google Scholar
  21. 21.
    I. ZHITOMIRSKY and L. GAL-OR, J Mater. Sci-Mater. M. 8 (1997) 213CrossRefGoogle Scholar
  22. 22.
    J. HAMAGAMI, Y. ATO and K. KANAMURA, J Ceram. Soc. Jpn. 114 (2006) 51CrossRefGoogle Scholar
  23. 23.
    J. MA, C. WANG and K. W. PENG, Biomaterials. 24(20) (2003) 3505CrossRefGoogle Scholar
  24. 24.
    M. WEI, A. J. RUYS, B. K. MILTHORPE, C. C. SORRELL and J. H. EVANS, J. Sol-Gel. Sic. Techn. 21 (2001) 39CrossRefGoogle Scholar
  25. 25.
    R. WANG and Y. X. HU, J. Biomed. Mater. Res. A. 67(A) (2003) 230Google Scholar
  26. 26.
    M. TRAU, D. A. SAVILLE et al., Science. 272 (1996) 706CrossRefGoogle Scholar
  27. 27.
    M TRAU, D. A. SAVILLE et al., Langmuir. 13 (1997) 6381CrossRefGoogle Scholar
  28. 28.
    P. N. De AZA, Z. B. LUKLINSKA, M. R. ANSEAU, F. GUITIAN and S. De AZA, J. Dent. 27 (1999) 107CrossRefGoogle Scholar
  29. 29.
    S. K. KURINEC and E. SLUZKY, J. Soc. Inform. Display. 4(4) (1996) 371Google Scholar
  30. 30.
    J. H. YUM and Y. E. SUNG, J. Electrochem. Soc. 51(2) (2004) H27CrossRefGoogle Scholar
  31. 31.
    T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721CrossRefGoogle Scholar
  32. 32.
    Y. SOLOMENTSEV, M. BÖHMER and J. L. ANDERSON, Langmuir. 13 (1997) 6058CrossRefGoogle Scholar
  33. 33.
    M. BÖHMER, Langmuir 12 (1996) 5747CrossRefGoogle Scholar
  34. 34.
    K. HATA, T. KOKUBO et al., J. Ame. Ceram. Soc. 78(4) (1995) 1049CrossRefGoogle Scholar
  35. 35.
    P. LI, C. OHTSUKI, T. KOKUBO, K NAKANISI and N. SOGA, J. Am. Ceram. Soc. 75(8) (1992) 2094CrossRefGoogle Scholar
  36. 36.
    C. OHTSUKI, T. KOKUBO and T. YAMAMURO, J. Non-Cryst. Sosids. 143 (1992) 84CrossRefGoogle Scholar
  37. 37.
    X. W. MENG, T. Y. KWON, Y. Z. YANG, J. L. ONG and K. H. KIM, J. Biomed. Mater. Res. B. 78B(2) (2006) 373CrossRefGoogle Scholar
  38. 38.
    D. SPICER, J. N. MCMULLIN and H. ROURKE, J. Micromech. Microeng. 16 (2006) 1674CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Seiji Yamaguchi
    • 1
  • Takeshi Yabutsuka
    • 1
  • Mitsuhiro Hibino
    • 1
  • Takeshi Yao
    • 1
  1. 1.Graduate School of Energy ScienceKyoto UniversityKyotoJapan

Personalised recommendations