Effect of drying conditions during synthesis on the properties of hydroxyapatite powders



The effect of the drying conditions during the hydroxyapatite (HAp) powder synthesis on the size and microstructure was studied. The starting materials were agitated in water, dried at 60–150 °C, and heat-treated at 720 °C. The heat-treated HAp powders were crystalline, and their particle sizes decreased with an increase in the drying time, but were independent of the drying temperature. For a 3 day drying period, it was 1.61 μm, and 0.55 μm for 21 days. The surface zeta potential of the HAp powder with a long drying period was more negatively charged than that from the short drying period. The average primary particle sizes of the HAp powders seem to be almost equivalent, and so the drying period may be related to the dispersibility of the primary particles, and may lead to a small HAp particle size.


  1. 1.
    K. DE GROOT, Biomaterials 1 (1980) 47CrossRefGoogle Scholar
  2. 2.
    J. D. DE BRUIJIN, Y. P. BOVELL and C. A. VAN BLITTERSWIJK, Biomaterials 15 (1994) 543CrossRefGoogle Scholar
  3. 3.
    Y. YOKOGAWA, J. Chem. Ind. 5 (2001) 57Google Scholar
  4. 4.
    M. WANG, R. JOSEPH and W. BONFIELD, Biomaterials 19 (1998) 2357CrossRefGoogle Scholar
  5. 5.
    I. R. GIBSON, S. KE, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 12 (2001) 163CrossRefGoogle Scholar
  6. 6.
    F. LELIEVER, D. BERNACHE-ASSOLLANT and T. CHARTIER, J. Mater. Med. 7 (1996) 489CrossRefGoogle Scholar
  7. 7.
    W. R. RAO and R. F. BOEHM, J. Dent. Res. 53 (1974) 1351Google Scholar
  8. 8.
    P. E. WANG and T. K. CHAKI, J. Mater. Sci. 4 (1993) 150CrossRefGoogle Scholar
  9. 9.
    A. ROYER, J. VIGUIE, C. M. HEUGHEBAERT and J. C. HEUGHEBAERT, J. Mater. Sci. Mater. Med. 4 (1993) 76CrossRefGoogle Scholar
  10. 10.
    S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 5 (1994) 516CrossRefGoogle Scholar
  11. 11.
    S. PUIJINDANATER, S. M. BEST and W. BONFIELD, Br. Ceram Trans. 93 (1994) 96Google Scholar
  12. 12.
    M. G. S. MURRAY, J. WANG, C. B. PANTON and P. M. MARQUIS, J. Mater. Sci. 30 (1995) 3061CrossRefGoogle Scholar
  13. 13.
    P. VAN LANDUYT, F. LI, J. P. KEUSTERMANS, J. M. STREYDIO, F. DELANNAY and E. MUNTING, J. Mater. Sci. Mater. Med. 6 (1995) 8CrossRefGoogle Scholar
  14. 14.
    A. J. RUYS, M. WEI, C. C. SORRELL, M. R. DICKSON, A. BRANDWOOD and B. K. MITHORPE, Biomaterials 16 (1995) 409CrossRefGoogle Scholar
  15. 15.
    D.-M. LIU, Ceram. Inter. 24 (1998) 441CrossRefGoogle Scholar
  16. 16.
    T. TORIYAMA, Y. KAWAMOTO, T. SUZUKI, Y. YOKOGAWA and S. KAWAMURA, Rep. Gov. Ind. Res. Inst. Nagoya 39 (1990) 217Google Scholar
  17. 17.
    A. OSAKA, Y. MIURA, K. TAKEUCHI, M. ASADA and K. TAKAHASHI, J. Mater. Med. 2 (1991) 51CrossRefGoogle Scholar
  18. 18.
    I. R. GIBSON, S. M. BEST and W. BONFIELD, J. Biomed. Mater. Res. 44 (1999) 422CrossRefGoogle Scholar
  19. 19.
    M.-F. HSIEH, L.-H. PERNG, T.-S. CHIN and H.-G. PENG, Biomaterials 22 (2001) 2601CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan
  2. 2.National Institute of Advanced Science and TechnologyNagoyaJapan
  3. 3.Osaka-city UniversityOsakaJapan

Personalised recommendations