Fabrication of fibrous poly(butylene succinate)/wollastonite/apatite composite scaffolds by electrospinning and biomimetic process

Article

Abstract

In this paper, a novel kind of Poly(butylene succinate) (PBSU) /wollastonite/apatite composite scaffold was fabricated via electrospinning and biomimetic process. Pure PBSU scaffold and composite scaffolds with 12.5 wt% and 25 wt% wollastonite were firstly fabricated by electrospinning. SEM micrographs showed that all the electrospun scaffolds had homogeneous fibrous structures with interconnected pores and randomly oriented ultrafine fibers. The composite scaffolds were then surface modified using a biomimetic process. SEM and XRD results showed that apatite could deposit on the surfaces of the composite fibers after incubation in SBF and a novel fibrous structure with microspheres composed of worm-like apatite on composite fibers was formed. Incubation time and wollastonite content were found to influence the morphology of the scaffolds during the biomimetic process obviously. Both the amount and the size of the microspheres on the composite scaffolds increased with increased incubation time. After a certain incubation time, microspheres formed on the composite fibers with less wollastonite had a relatively larger size. Therefore, the microstructure of the composite scaffolds could be adjusted by controlling the wollastonite content and the incubation time. All of these results suggest that it is an effective approach to fabricate PBSU/wollastonite/apatite fibrous composite scaffolds with different material content and controllable microstructure for bone tissue engineering.

References

  1. 1.
    R. LANGER and J. P. VACANTI, Science 260 (1993) 920CrossRefGoogle Scholar
  2. 2.
    G. CRANE, S. ISHAUG and A. MIKOS, Nat. Med. 1 (1995) 1322CrossRefGoogle Scholar
  3. 3.
    C. VACANTI and J. VACANTI, Otolaryngol Clin. North. Am. 27 (1994) 263Google Scholar
  4. 4.
    R. ZHANG and P. X. MA, J. Biomed. Mater. Res. 44 (1999) 446CrossRefGoogle Scholar
  5. 5.
    J. R. JONES, L. M. EHRENFRIED and L. L. HENCH, Biomaterials 27 (2006) 964CrossRefGoogle Scholar
  6. 6.
    P. X. MA, B. SCHLOO, D. MOONEY and R. LANGER, J. Biomed. Mater. Res. 29 (1995) 1587CrossRefGoogle Scholar
  7. 7.
    P. X. MA, T. SHIN’OKA, T. ZHOU, D. SHUM-TIM, J. LIEN, J. P. VACANTI, J. MAYER and R. LANGER, Trans. Soc. Biomater. 20 (1997) 295Google Scholar
  8. 8.
    L. A. SMITH and P. X. MA, Collide Surf. B 39 (2004) 125Google Scholar
  9. 9.
    D. LI and Y. N. XIA, Adv. Mater. 16 (2004) 1151CrossRefGoogle Scholar
  10. 10.
    Z. M. HUANG, Y. Z. ZHANG, M. KOTAKI and S. RAMAKRISHNA, Comp. Sci. Tech. 63 (2003) 2223CrossRefGoogle Scholar
  11. 11.
    W. J. LI, C. T. LAURENCIN, E. J. CATERSON, R. S. TUAN and F. K. KO, J. Biomed. Mater. Res. 60 (2002) 613CrossRefGoogle Scholar
  12. 12.
    H. YOSHIMOTO, Y. M. SHIN, H. TERAI and J. P. VACANTI, Biomaterials 24 (2003) 2077CrossRefGoogle Scholar
  13. 13.
    C. Y. XU, R. INAI, M. KOTAKI and S. RAMAKRISHNA, Biomaterials 25 (2004) 877CrossRefGoogle Scholar
  14. 14.
    W. J. LI, R. TULI, C. OKAFOR, A. DERFOUL, K. G. DANIELSON, D. G. HALL and R. S. TUAN, Biomaterials 26 (2005) 599CrossRefGoogle Scholar
  15. 15.
    W. J. LI, K. G. DANIELSON, P. G. ALEXANDER and R. S. TUAN, J. Biomed. Mater. Res. 67A (2003) 1105CrossRefGoogle Scholar
  16. 16.
    L. L. HENCH and J. M. POLAK, Science 295 (2002) 1014CrossRefGoogle Scholar
  17. 17.
    V. MAQUET, A. R. BOCCACCINI, L. PRAVATA, I. NOTINGHER and R. JÉRÔME, Biomaterials 25 (2004) 4185CrossRefGoogle Scholar
  18. 18.
    H. Y. LI and J. CHANG, Biomaterials 25 (2004) 5473CrossRefGoogle Scholar
  19. 19.
    H. Y. LI and J. CHANG, J. Mater. Sci. 15 (2004) 1CrossRefGoogle Scholar
  20. 20.
    M. NAVARRO, S. D. VALLE, S. MARTÍNEZ, S. ZEPPETELLI, L. AMBROSIO, J. A. PLANELL and M. P. GINEBRA, Biomaterials 25 (2004) 4233CrossRefGoogle Scholar
  21. 21.
    G. B. WEI and P. X. MA, Biomaterials 25 (2004) 4749CrossRefGoogle Scholar
  22. 22.
    H. Y. LI and J. CHANG, Macromol. Biosci. 5 (2005) 433CrossRefGoogle Scholar
  23. 23.
    L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487CrossRefGoogle Scholar
  24. 24.
    S. C. RIZZI, D. J. HEATH, A. G. A. COOMBES, N. BOCK, M. TEXTOR and S. DOWNES, J. Biomed. Mater. Res. 55 (2001) 475CrossRefGoogle Scholar
  25. 25.
    A. TISELIUS, S. HJERTEN and O. LEVIN, Arch. Biochem. Biophys. 56 (1956) 132CrossRefGoogle Scholar
  26. 26.
    R. Y. ZHANG and P. X. MA, J. Biomed. Mater. Res. 4 (1999) 285CrossRefGoogle Scholar
  27. 27.
    Z. Z. JIANG, D. T. GE, W. SHI and Q. Q. ZHANG, Synth. Met. 151 (2005) 152CrossRefGoogle Scholar
  28. 28.
    X. Y. YUAN, A. F. T. MAK and J. L. LI, J. Biomed. Mater. Res. 57 (2001) 140CrossRefGoogle Scholar
  29. 29.
    X. K. LI and J. CHANG, Chem. Lett. 33 (2004) 1458. CrossRefGoogle Scholar
  30. 30.
    L. BORUM-NICHOLAS and J. O. WILSON, Biomaterials 24 (2003) 3671CrossRefGoogle Scholar
  31. 31.
    W. CHENG and J. CHANG, J. Biomater. Appl. 20 (2006) 361CrossRefGoogle Scholar
  32. 32.
    T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721CrossRefGoogle Scholar
  33. 33.
    R. LUOH and H. T. HAHN, Compos. Sci. Technol. 66 (2006) 2436CrossRefGoogle Scholar
  34. 34.
    Y. ABE, T. KOKUBO and T. YAMAMUNO, J. Mat. Sci. Mater. Med. 1 (1990) 233CrossRefGoogle Scholar
  35. 35.
    Y. ITO, H. HASUDA, M. KAMITAKAHARA, C. OHTSUKI, M. TANIHARA, I. K. KANG and O. H. KWON, J. Biosci. Bioeng. 100 (2005) 43CrossRefGoogle Scholar
  36. 36.
    H. Y. LI and J. CHANG, Poly. Deg. Stab. 87 (2005) 301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Biomaterials and Tissue Engineering Research CenterShanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiP.R. China
  2. 2.Analysis & Testing Center for Inorganic MaterialsShanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiP.R. China

Personalised recommendations