The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells

  • F. S. Magdon Ismail
  • R. Rohanizadeh
  • S. Atwa
  • R. S. Mason
  • A. J. Ruys
  • P. J. Martin
  • A. Bendavid
Article

Abstract

The purpose of the present study was to determine in vitro the effects of different surface topographies and chemistries of commercially pure titanium (cpTi) and diamond-like carbon (DLC) surfaces on osteoblast growth and attachment. Microgrooves (widths of 2, 4, 8 and 10 μm and a depth of 1.5–2 μm) were patterned onto silicon (Si) substrates using microlithography and reactive ion etching. The Si substrates were subsequently vapor coated with either cpTi or DLC coatings. All surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Using the MG63 Osteoblast-Like cell line, we determined cell viability, adhesion, and morphology on different substrates over a 3 day culture period. The results showed cpTi surfaces to be significantly more hydrophilic than DLC for groove sizes larger than 2 μm. Cell contact guidance was observed for all grooved samples in comparison to the unpatterned controls. The cell viability tests indicated a significantly greater cell number for 8 and 10 μm grooves on cpTi surfaces compared to other groove sizes. The cell adhesion study showed that the smaller groove sizes, as well as the unpatterned control groups, displayed better cell adhesion to the substrate.

References

  1. 1.
    K. ANSELME, Biomat 21 (2000) 667CrossRefGoogle Scholar
  2. 2.
    B. D. BOYAN, T. W. HUMMERT, D. D. DEAN and Z. SCHWARTZ, Biomat 17 (1996) 137CrossRefGoogle Scholar
  3. 3.
    J. C. KELER, C. M. STANFORD, J. P. WIGHTMAN, R. A. DRAUGHN and R. ZAHARIAS, J. Biomed. Mater. Res. 28 (1994) 939CrossRefGoogle Scholar
  4. 4.
    U. MEYER, D. H. SZULCZEWSKI, K. MOLLER, H. HEIDE and D. B. JONES, Cells and Mater. 3 (1993) 129Google Scholar
  5. 5.
    D. DE SANTIS, C. GUERRIERO, P. F. NOCINI, A. UNGERSBOCK, G. RICHARDS, P. GOTTE and U. ARMATO, J. Mater. Sci. Mater in Med. 7 (1996) 21CrossRefGoogle Scholar
  6. 6.
    N. ABDESSAMAD and M. F. HATMAND J. Biomed. Mater. Res. 24 (1990) 861CrossRefGoogle Scholar
  7. 7.
    C. R. HOWLETT, M. D. M. EVANS, W. R. WALSH, J. GRAHAM and J. G. STEELE, Biomat. 15 (1994) 213CrossRefGoogle Scholar
  8. 8.
    D. A. PULEO and R. BIZIOS J. Biomed. Mater. Res. 26 (1992) 291CrossRefGoogle Scholar
  9. 9.
    A. HUNTER, C. W. ARCHER, P. S. WALKER and G. W. BLUNN, Biomat. 16 (1995) 287CrossRefGoogle Scholar
  10. 10.
    P. CLARK, G. A. DUNN, A. KNIBBS and M. PECKHAM, Int. J. Biochem. Cell Biol,. 34 (2002) 816CrossRefGoogle Scholar
  11. 11.
    A. I. TEIXEIRA, G. A. ABRAMS, C. J. MURPHY and P. F. NEALEY J. Vac. Sci. & Technol. B 21 (2003) 683CrossRefGoogle Scholar
  12. 12.
    S. LENHERT, M. B. MEIER, U. MEYER, L. CHI and H. P. WIESMANN Biomat. 26 (2005) 563CrossRefGoogle Scholar
  13. 13.
    s. g. steinemann , Periodont. 2000, 17 (1998) 7Google Scholar
  14. 14.
    S. SZMUKLER-MONCLER, D. PERRIN, V. AHOSSI, G. MAGNIN and J. P. BERNARD, J. Biomed. Mater. Res. 68B (2004) 149CrossRefGoogle Scholar
  15. 15.
    D. L. COCHRAN, J. SIMPSON, H. WEBER and D. BUSER, Int. J. Oral Maxillo. Imp. 9 (1994) 289Google Scholar
  16. 16.
    K. T. BOWERS, J. C. KELLER, B. A. RANDOLPH, D. G. WICK and C. M. MICHAELS, Int. J. Oral Maxillo. Imp. 7 (1992) 302Google Scholar
  17. 17.
    C. M. MICHAELS, J. C. KELLER, C. M. STANFORD and M. SOLURSH, J. Dent. Res. 68 (1989) 276Google Scholar
  18. 18.
    J. Y. MARTIN, Z. SCHWARTZ, W. HUMMERT, D. M. SCHRAUB, J. SIMPSON, J. LANKFORD JR, D. D. DEAN, D. L. COCHRAN and B. D. BOYAN, J. Biomed. Mater. Res. 29 (1995) 389CrossRefGoogle Scholar
  19. 19.
    K. KIESWETTER, Z. SCHWARTZ, T. W. HUMMERT, D. L. COCHRAN, J. SIMPSON, D. D. DEAN and B. D. BOYAN, J. Biomed. Mater. Res. A 32 (1996) 55CrossRefGoogle Scholar
  20. 20.
    J. LINCKS, B. D. BOYAN, C. R. BLANCHARD, C. H. LOHMANN, Y. LIU, D. L. COCHRAN, D. D. DEAN and Z. SCHWARTZ, Biomat. 19 (1998) 2219CrossRefGoogle Scholar
  21. 21.
    D. D. DELIGIANNI, N. KATSALA, S. LADAS, D. SOTIROPOULOU, J. AMEDEE and Y. F. MISSIRLIS, Biomat. 22 (2001) 1241CrossRefGoogle Scholar
  22. 22.
    M. BIGERELLE, K. ANSELME, B. NOËL, I. RUDERMAN, P. HARDOUIN and A. IOST, Biomat. 23 (2002) 1563CrossRefGoogle Scholar
  23. 23.
    P. DUCHEYNE, G. WILLEMS, M. MARTENS and J. HELSEN, J. Biomed. Mater. Res. 18 (1984) 293CrossRefGoogle Scholar
  24. 24.
    J. L. WOODMAN, J. J. JACOBS, J. O. GALANTE and R. M. URBAN, J. Ortho. Res. 1 (1984)421CrossRefGoogle Scholar
  25. 25.
    S. AISENBERG and R. CHABOT, J. App. Phys. 42 (1971) 2953CrossRefGoogle Scholar
  26. 26.
    H. C. TSAI and D. B. BOGY, J. Vac. Sci. Technol. A5 (1987) 3287Google Scholar
  27. 27.
    F. JANSEN, M. MACHONKIN, S. KAPLAN and S. HARK, J. Vac. Sci. Technol. A3 (1985) 605Google Scholar
  28. 28.
    J. C. ANGUS and F. JANSEN, J. Vac. Sci. & Technol. A6 (1988) 1778CrossRefGoogle Scholar
  29. 29.
    D. R. MCKENZIE, R. C. MCPHEDRAN, N. SAVVIDES and L. C. BOTTER, Philos. Mag. 48 (1983) 341Google Scholar
  30. 30.
    C. V. DESHPANDEY and R. F. BUNSHAH, J. Vac. Sci. & Technol. A7 (1989) 2294CrossRefGoogle Scholar
  31. 31.
    A. MATTHEWS and S. S. ESKILDEN, Diam. Films. 13 (1993) 1Google Scholar
  32. 32.
    A. ERDEMIR, M. SWITALA, R. WEI and P. WILBUR, Surf. Coat. Technol. 50 (1991) 17CrossRefGoogle Scholar
  33. 33.
    M. ALLEN, F. LAW and N. RUSHTON, Clin. Mater. 17 (1994) 1CrossRefGoogle Scholar
  34. 34.
    J. JANG , J. H. MOON, E. J. HAN and S. J. CHUNG, Thin Solid Films, 341 (1999)Google Scholar
  35. 35.
    M. W. PHANEUF, Micron. 30 (1999) 277CrossRefGoogle Scholar
  36. 36.
    M. WIELAND, B. CHEHROUDI, M. TEXTOR and D. M. BRUNETTE, J. Biomed. Mater. Res. 60 (2002) 434CrossRefGoogle Scholar
  37. 37.
    T. K. OLSON , R. G. LEE and J. C. MORGAN, in “18th International Symposium for Testing and Failure Analysis (ISTFA 92)” (Materials Park, Ohio: ASM International, 1992)Google Scholar
  38. 38.
    b . l. GABRIEL, SEM: A User's Manual For Materials Science (Metals Park, Ohio 44073: American Society for Metals, 1985)Google Scholar
  39. 39.
    General Electric Company G.E. in http://www.gewater.com/library/tp/772_Hydrophilicity_and.jsp, 1997–2005Google Scholar
  40. 40.
    S. A. REDEY, S. RAZZOUK, C. REY, D. BERNACHE-ASSOLLANT, G. LEROY, M. NARDIN and G. COURNOT, J. Biomed. Mater. Res. 45 (1999) 140CrossRefGoogle Scholar
  41. 41.
    T. G. VAN KOOTEN, J. M. SCHAKENRAAD, H. C. VAN DER MEI and H. J. BUSSCHER, Biomat. 13 (1992) 897Google Scholar
  42. 42.
    K. MATSUZAKA, X. F. WALBOOMERS, M. YOSHINARI, T. INOUE and J. A. JANSEN, Biomat. 24 (2003) 2711CrossRefGoogle Scholar
  43. 43.
    E. EISENBARTH, P. LINEZ, V. BIEHL, D. VELTEN, J. BREME and H. F. HILDEBRAND, Biomol. Eng. 19 (2002) 233CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • F. S. Magdon Ismail
    • 1
  • R. Rohanizadeh
    • 2
  • S. Atwa
    • 2
  • R. S. Mason
    • 2
  • A. J. Ruys
    • 1
  • P. J. Martin
    • 3
  • A. Bendavid
    • 3
  1. 1.Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic EngineeringUniversity of SydneySydneyAustralia
  2. 2.Department of PhysiologyUniversity of SydneySydneyAustralia
  3. 3.CSIRO, Industrial PhysicsLindfieldAustralia

Personalised recommendations