Density functional calculations of the properties of silicon-substituted hydroxyapatite



Ab initio density functional plane-wave calculations are performed on silicon-substituted hydroxyapatite (SiHA). Formation energies are obtained for the substitution of a phosphorus atom by a silicon atom in each of the six phosphate groups of the unit cell in turn. It is found that the co-removal of a hydroxyl group to maintain charge neutrality is energetically favourable and the calculated unit cell volumes for the single silicon substitutions agree extremely well with experimental observation. The substitution of a second silicon atom in the unit cell is found to be almost as energetically favourable as the first (and on one site more favourable) and there can be an attractive interaction between the two Si substituents when they are closely separated. However, experimental observation suggests that for this concentration of silicon a phase transformation to a different structure occurs which, because of the imposed boundary conditions, could not be accessed in the calculations. The density of states of the SiHA indicates that new states are introduced deep into the valence band and the band gap decreases by 1.6 eV compared to phase-pure HA. No new states are introduced into the band gap indicating that the Si incorporation does not make the material inherently electrically active. Furthermore a population analysis shows that the Si impurity has only a small effect on the neighbouring ionic charge.



Helen Chappell would like to thank the EPSRC and ApaTech Ltd for supporting this project. The calculations were performed using the CCHPCF (Cambridge) and HPCx (Daresbury) computing facilities. The authors would like to acknowledge useful discussions with Dr Alex Porter and technical advice from Dr Phil Hasnip.


  1. 1.
    N. H. DE LEEUW, Chem. Commun. 17 (2001) 1646CrossRefGoogle Scholar
  2. 2.
    S. M. REA, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 15(9) (2004) 997CrossRefGoogle Scholar
  3. 3.
    A. PEETERS, E. A. P. DE MAEYER, C. VAN ALSENOY and R. M. H. VERBEECK, Phys. Chem. B 101 (1997) 3995CrossRefGoogle Scholar
  4. 4.
    T. KOBAYASHI, S. NAKAMURA and K. YAMASHITA, J. Biomed. Mater. Res. 57 (2001) 477CrossRefGoogle Scholar
  5. 5.
    N. H. DE LEEUW, Phys. Chem. Chem. Phys. 4 (2002) 3865CrossRefGoogle Scholar
  6. 6.
    N. H. DE LEEUW, J. Phys. Chem. B 108(6) (2004) 1809CrossRefGoogle Scholar
  7. 7.
    I. R. GIBSON, S. M. BEST and W. BONFIELD, J. Biomed. Mater. Res. 44 (1999) 422CrossRefGoogle Scholar
  8. 8.
    H. F. CHAPPELL, MPhil Dissertation, University of Cambridge (2003)Google Scholar
  9. 9.
    S. WEN and Q. LIU, Microscopy Res. Tech. 40 (1998) 177CrossRefGoogle Scholar
  10. 10.
    A. E. PORTER, S. M. BEST and W. BONFIELD, Key Eng. Mat. 240–2 (2003) 505Google Scholar
  11. 11.
    A. E. PORTER, N. PATEL, J. N. SKEPPER, S. M. BEST and W. BONFIELD, Biomaterials 24 (2003) 4609CrossRefGoogle Scholar
  12. 12.
    I. R. GIBSON, S. M. BEST and W. BONFIELD, J. Am. Ceram. Soc. 85(11) (2002) 2771CrossRefGoogle Scholar
  13. 13.
    I. R. GIBSON, K. A. HING, P. A. REVELL, J. D. SANTOS, S. M. BEST and W. BONFIELD, Key Eng. Mater. 254–256 (2002) 203CrossRefGoogle Scholar
  14. 14.
    E. M. CARLISLE, Science 167 (1970) 179CrossRefGoogle Scholar
  15. 15.
    C. M. BOTELHO, M. A. LOPES, I. R. GIBSON, S. M. BEST and J. D. SANTOS, J. Mater. Sci. Mater. Med. 13 (2002) 1123CrossRefGoogle Scholar
  16. 16.
    N. PATEL, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 13 (2002) 1199CrossRefGoogle Scholar
  17. 17.
    M. JIANG, J. TERRA, A. M. ROSSI, M. A. MORALES, E. M. BAGGIO SAITOVITCH and D. E. ELLIS, Phys. Rev. B 66 (2002) 224107CrossRefGoogle Scholar
  18. 18.
    M. C. PAYNE, M. P. TETER, D. C. ALLAN, T. A. ARIAS, J. D. JOANNOPOULOS, Rev. Mod. Phys. 64(4) (1992) 1045CrossRefGoogle Scholar
  19. 19.
    M. D. SEGALL, P. J. D. LINDAN, M. J. PROBERT, C. J. PICKARD, P. J. HASNIP, S. J. CLARK and M. C. PAYNE, J. Phys. Condens. Matter 14 (2002) 2717CrossRefGoogle Scholar
  20. 20.
    D. VANDERBILT, Phys. Rev. B 41 (1990) 7892CrossRefGoogle Scholar
  21. 21.
    H. J. MONKHORST and J. D. PACK, Phys. Rev. B 13(12) (1976) 5188CrossRefGoogle Scholar
  22. 22.
    J. PERDEW, K. BURKE and M. ERNZERHOF, Phys. Rev. Lett. 77(18) (1996) 3865Google Scholar
  23. 23.
    W. H. PRESS et al. Numerical recipes (Cambridge University Press, 1989)Google Scholar
  24. 24.
    Materials Studio 3.1, AccelrysGoogle Scholar
  25. 25.
    S. M. BEST, W. BONFIELD, I. R. GIBSON, L. J. JIA and S. J. D. DA SILVA, Silicon-substituted apatites and process for the preparation thereof (August 9, 1999), Patent Number: 6,312,468Google Scholar
  26. 26.
    A. E. PORTER, PhD Thesis, University of Cambridge (2003)Google Scholar
  27. 27.
    M. D. SEGALL, C. J. PICKARD, R. SHAH and M. C. PAYNE Mol. Phys. 89 (1996) 571CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations