Microporosity enhances bioactivity of synthetic bone graft substitutes

  • K. A. Hing
  • B. Annaz
  • S. Saeed
  • P. A. Revell
  • T. Buckland


This paper describes an investigation into the influence of microporosity on early osseointegration and final bone volume within porous hydroxyapatite (HA) bone graft substitutes (BGS). Four paired grades of BGS were studied, two (HA70-1 and HA70-2) with a nominal total porosity of 70% and two (HA80-1 and HA80-2) with a total-porosity of 80%. Within each of the total-porosity paired grades the nominal volume fraction of microporosity within the HA struts was varied such that the strut porosity of HA70-1 and HA80-1 was 10% while the strut-porosity of HA70-2 and HA80-2 was 20%. Cylindrical specimens, 4.5 mm diameter × 6.5 mm length, were implanted in the femoral condyle of 6 month New Zealand White rabbits and retrieved for histological, histomorphometric, and mechanical analysis at 1, 3, 12 and 24 weeks. Histological observations demonstrated variation in the degree of capillary penetration at 1 week and bone morphology within scaffolds 3–24 weeks. Moreover, histomorphometry demonstrated a significant increase in bone volume within 20% strut-porosity scaffolds at 3 weeks and that the mineral apposition rate within these scaffolds over the 1–2 week period was significantly higher. However, an elevated level of bone volume was only maintained at 24 weeks in HA80-2 and there was no significant difference in bone volume at either 12 or 24 weeks for 70% total-porosity scaffolds. The results of mechanical testing suggested that this disparity in behaviour between 70 and 80% total-porosity scaffolds may have reflected variations in scaffold mechanics and the degree of reinforcement conferred to the bone-BGS composite once fully integrated. Together these results indicate that manipulation of the levels of microporosity within a BGS can be used to accelerate osseointegration and elevate the equilibrium volume of bone.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clinica Reports 2002, Orthopaedics:Key markets & emerging technologies, CBS905E.Google Scholar
  2. 2.
    J. J. KLAWITTER and S. F. HULBERT, J. Biomed Mater. Res. 5 (1971) 161.CrossRefGoogle Scholar
  3. 3.
    P. S. EGGLI, W. MULLER and R. K. SCHENK, Clin. Orthop. Relat. Res. 232 (1988) 127.PubMedGoogle Scholar
  4. 4.
    K. A. HING, S. M. BEST, K. E. TANNER, W. BONFIELD and P. A. REVELL, J. Biomed. Mater. Res. 68A (2004) 187.CrossRefGoogle Scholar
  5. 5.
    R. E HOLMES, V. MOONEY, R. BUCHOLZ and A. TENCER, Clin. Orthop. Rel. Res. 188 (1984) 252.Google Scholar
  6. 6.
    J. J. KLAWITTER, J. G. BAGWELL, A. M. WEINSTEIN, B. W. SAUER and J. R. PRUITT, J. Biomed. Mater. Res. 10 (1976) 311.CrossRefPubMedGoogle Scholar
  7. 7.
    J. H. KÚHNE, R. BARTL, B. FRISH, C. HANMER, V. JANSSON and M. ZIMMER, Acta Orthop. Scand. 65(3) (1994) 246.PubMedGoogle Scholar
  8. 8.
    P. A. RUBIN, J. K. POPHAM, J. R. BILYK and J. W. SHORE, Ophthal. Plast. Reconstr. Surg. 10(2) (1994) 96.PubMedGoogle Scholar
  9. 9.
    K. L. KILPADI, A. A. SAWYER, C. W. PRINCE, P. L. CHANG and S. L. BELLIS, J. Biomed. Mater. Res. 68A(2) (2004) 273.CrossRefGoogle Scholar
  10. 10.
    J. WOLFF, Virchows Arch. Path. Anat. Physiol. 50 (1870).Google Scholar
  11. 11.
    H. M. FROST, Anat. Rec. 219(1) (1987) 1.CrossRefPubMedGoogle Scholar
  12. 12.
    J. R. MAUNEY, S. SJOSTORM, J. BLUMBERG, R. HORAN, J. P. O’LEARY, G. VUNJAK-NOVAKOVIC, V. VOLLOCH and D. L. KAPLAN, Calcif. Tissue. Int. 74(5) (2004) 458.CrossRefPubMedGoogle Scholar
  13. 13.
    B. ANNAZ, K. A. HING, M. V. KAYSER, T. BUCKLAND and L. DI SILVIO, J. Microscopy. 215(1) (2004) 100.CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. BIGNON, J. CHOUTEAU, J. CHEVALIER, G. FANTOZZI, J. P. CARRET, P. CHAVASSIEUX, G. BOIVIN, M. MELIN and D. HARTMANN, J. Mater. Sci. Mater. Med. 14(3) (2003)1089.CrossRefPubMedGoogle Scholar
  15. 15.
    K. A. HING, S. SAEED, B. ANNAZ, T. BUCKLAND and P. A. REVELL, Key Engng. Mater. 254–256 (2004) 273.Google Scholar
  16. 16.
    A. BOYDE, A. CORSI, R. QUARTO, R. CANCEDDA and P. BIANCO, Bone 24(6) (1999) 579.CrossRefPubMedGoogle Scholar
  17. 17.
    K. A. HING and W. BONFIELD, Foamed Ceramics, International Patent No. GB99/03283. (1999)Google Scholar
  18. 18.
    K. A. HING and T. BUCKLAND, Ceramic Biomaterial, UK Patent application No. 03258.33.2 (2003).Google Scholar
  19. 19.
    Powder diffraction file (PDF) 9-432, International centre for diffraction data, Newton Square Pensilvania USAGoogle Scholar
  20. 20.
    K. A. HING, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 10(3) (1999) 135.CrossRefPubMedGoogle Scholar
  21. 21.
    K. DONATH, J. Oral. Pathology 11 (1982) 318.Google Scholar
  22. 22.
    E. R. WEIBEL and H. E. ELIAS, in “Quantitative Methods in Morphology” (Springer-Verlag, Berlin 1967) p. 87.Google Scholar
  23. 23.
    K. A. HING, S. M. BEST, P. A. REVELL, K. E. TANNER and W. BONFIELD, Proc. Instn. Mech. Engrs. Part. H 212 (1998) 437.CrossRefGoogle Scholar
  24. 24.
    H. M. FROST in “Bone Histomorphometry” edited by P.J. Meunier (1976) p. 361.Google Scholar
  25. 25.
    S. OHTSUBO, M. MATSUDA and M. TAKEKAWA, Histol Histopathol. 18(1) (2003) 153.PubMedGoogle Scholar
  26. 26.
    J. A. O’CONNOR, L. E. LANYON and J. H. MACFIE, J. Biomech. 15 (1982) 767.CrossRefPubMedGoogle Scholar
  27. 27.
    L. E. LANYON, A. E. GOODSHIP, C. J. PIE and J. H, ibid. 15(3) (1982) 141.CrossRefPubMedGoogle Scholar
  28. 28.
    D. B. BURR, R. B. MARTIN, M. B. SCHAFFLER and E. L. RADIN, ibid. 18 (1985)189.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • K. A. Hing
    • 1
  • B. Annaz
    • 1
  • S. Saeed
    • 2
  • P. A. Revell
    • 2
  • T. Buckland
    • 3
  1. 1.IRC in Biomedical MaterialsQueen Mary University of LondonLondonUK
  2. 2.Osteoarticular Research GroupUniversity College LondonLondonUK
  3. 3.ApaTech Ltd., IRC in Biomedical MaterialsQueen Mary University of LondonLondonUK

Personalised recommendations