Advertisement

Laser bonded microjoints between titanium and polyimide for applications in medical implants

  • A. Mian
  • G. Newaz
  • L. Vendra
  • N. Rahman
  • D. G. Georgiev
  • G. Auner
  • R. Witte
  • H. Herfurth
Article

Abstract

Bioencapsulation of medical implant devices, and neural implant devices in particular, requires development of reliable hermetic joints between packaging materials that are often dissimilar. Titanium-polyimide is one of the biocompatible material systems, which are of interest to our research groups at Wayne State University and Fraunhofer USA. We have found processing conditions for successful joining of titanium with polyimide using near-infrared diode lasers or fiber lasers along transmission bonding lines with widths ranging from 200 to 300 μm. Laser powers of 2.2 and 3.8 W were used to create these joints. Laser-joined samples were tested in a microtester under tensile loading to determine joint strengths. In addition, finite element analysis (FEA) was conducted to understand the stress distribution within the bond area under tensile loading. The FEA model provides a full-field stress distribution in and around the joint that cause eventual failure. Results from the investigation provide an initial approach to characterize laser-fabricated microjoints between dissimilar materials that can be potentially used in optimization of bio-encapsulation design.

Keywords

Titanium Finite Element Analysis Stress Distribution Polyimide Fiber Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. JEFFREY, “The Implantable Defibrillator and American Health Care” (2001) p. 408.Google Scholar
  2. 2.
    S. MIYOSHI, T. IFUKUBE and J. MATSUSHIMA, Transactions of the Institute of Electrical Engineers of Japan Part A 118-A(3) (1998), 260.Google Scholar
  3. 3.
    U. MEYER-BAESE, A. MEYER-BAESE and H. SCHEICH, IN PROCEEDINGS OF SPIE—THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, (1997), VOL. 3077, P. 582.Google Scholar
  4. 4.
    R. G. DENNIS, D. E. DOW and J. A. FAULKNE, Medical Engineering & Physics 25(3) (2003) 239.Google Scholar
  5. 5.
    B. LITT, In IEEE Proceedings of the 23rd Annual Embs International Conference (October 25-28, Istanbul, Turkey, 2001) P. 4124.Google Scholar
  6. 6.
    J. T. SANTINI, In Proceedings of the 4th Int. Symposium on Biomems, (Cambridge Ma, 2002).Google Scholar
  7. 7.
    R. S. SHAWGO, A. C. R. GRAYSON, Y. LI and M. J. CIMA, Current Opinion in Solid State and Materials Science 6(4) (2002) 329.Google Scholar
  8. 8.
    M. L. HANS and A. M. LOWMAN, Current Opinion in Solid State and Materials Science 6(4) (2002) 319.Google Scholar
  9. 9.
    N. S. PEACHEY and A. Y. CHOW, Journal of Rehabilitation Research and Development 36(4) (1999) 381.Google Scholar
  10. 10.
    A. Y. CHOW and V. Y. CHOW, Neuroscience Letters 225(1) (1997) 13.Google Scholar
  11. 11.
    M. S. HUMAYUN, J. D. WEILAND, G. Y. FUJII, R. GREENBERG, R. WILLIAMSON, J. LITTLE, B. MECH, V. CIMMARUSTI, G. V. BOEMEL, G. DAGNELIE and E. D. JUAN Jr, Vision Research 43 (2003) 2573.Google Scholar
  12. 12.
    J. MEYER, T. STIEGLITZ, O. SCHOLZ, W. HABERER and H. BEUTEL, IEEE Transactions on Advanced Packaging 24(3) (2001) 366.Google Scholar
  13. 13.
    M. J. WILD, A. GILLNER and R. POPRAWE, Sensors and Actuators A 93 (2001) 63.Google Scholar
  14. 14.
    G. NEWAZ, A. MIAN, L. VENDRA, D. GEORGIEV, T. MAHMOOD, G. AUNER, R. WITTE, and H. HERFURTH, IN PROCEEDINGS OF THE INTERNATIONAL CONGRESS ON MATERIALS SCIENCE and NANOTECHNOLOGIES (EUROPEAN ACADEMY OF SCIENCE, BRUSSELS, BELGIUM, OCTOBER 2003).Google Scholar
  15. 15.
    V. A. KAGAN, R. G. BRAY and W. P. KUHN, Journal of Reinforced Plastics and Composites 21(12) (2002) 1101.Google Scholar
  16. 16.
    V. A. KAGAN and G. P. PINHO, Journal of Reinforced Plastics and Composites 23(1) (2004) 95.Google Scholar
  17. 17.
    P. A. HILTON, I. A. JONES and Y. KENNISH, IN PROCEEDINGS OF SPIE—THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING (2002) VOL. 4831, P. 44.Google Scholar
  18. 18.
    I. BAUER, U. A. RUSSEK, H. HERFURTH, R. WITTE, S. HEINEMANN, G. NEWAZ, A. MIAN, D. GEORGIEV, and G. AUNER, IN PROCEEDINGS OF SPIE—PHOTONICS WEST LASE 2004: LASERS and APPLICATIONS IN SCIENCE and ENGINEERING CONFERENCE, (SAN JOSE, CALIFORNIA, 24–29 JANUARY 2004).Google Scholar
  19. 19.
    M. LU, Z. QIAN, W. REN, S. LIU and D. SHANGGUAN, Intern. J. Solids Struct. 36(1) (1999) 65.Google Scholar
  20. 20.
    ABAQUS USER’S MANUAL, VERSION 6.2, HIBBIT, KARLSSON and SORENSEN, USA.Google Scholar
  21. 21.
    C. YANG and S. PANG, J. Engng Mater. Techn. 118 (1996) 247.Google Scholar
  22. 22.
    D. G. GEORGIEV, R. J. BAIRD, G. NEWAZ, G. AUNER, R. WITTE and H. HERFURTH, Applied Surface Science 236(1) (2004) 71.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • A. Mian
    • 1
  • G. Newaz
    • 1
    • 2
    • 3
  • L. Vendra
    • 1
  • N. Rahman
    • 1
  • D. G. Georgiev
    • 2
  • G. Auner
    • 2
  • R. Witte
    • 4
  • H. Herfurth
    • 4
  1. 1.Department of Mechanical EngineeringWayne State UniversityDetroitUSA
  2. 2.Center for Smart Sensors and Integrated Microsystems (SSIM)Wayne State UniversityDetroitUSA
  3. 3.Institute for Manufacturing ResearchWayne State UniversityDetroitUSA
  4. 4.Center for Laser TechnologyFraunhofer USAPlymouthUSA

Personalised recommendations