Journal of Materials Science: Materials in Medicine

, Volume 16, Issue 11, pp 1017–1028 | Cite as

Porous-conductive chitosan scaffolds for tissue engineering II. in vitro and in vivo degradation

  • Ying Wan
  • Aixi Yu
  • Hua Wu
  • Zhaoxu Wang
  • Dijiang Wen
Article

Abstract

Porous-conductive chitosan scaffolds were fabricated by blending conductive polypyrrole (PPy) particles with chitosan solution and employing an improved phase separation method. In vitro and in vivo degradation behaviors of these scaffolds were investigated. In the case of in vitro degradation, an enzymatic degradation system was employed and lysozyme was used as a working enzyme. Meanwhile, the degradation products of scaffolds, glucosamine and N-acetyl-glucosamine, were also analyzed with a HPLC method. In vivo degradation of scaffolds was performed by subcutaneously implanting these scaffolds in rat for prescheduled time intervals. In the both cases, the weight-loss of scaffolds was monitored during the whole degradation process for evaluating the degradation of scaffolds. The changes in conductivity of scaffolds afterin vitro or in vivo degradation were also measured using a four-point technique. It was observed that the pore parameters of scaffolds themselves could significantly influence the degradation behaviors of scaffolds but the PPy content in the scaffolds seemed not to impart its effect to the degradation of scaffolds. Degradation dynamics of scaffolds and conductivity measurements indicated that these scaffolds shown fairly different behaviors in their in vitro and in vivo degradation process. According to the results obtained from in vitro and in vivo degradation of scaffolds and based on some requirements of practical tissue engineering application, it was suggested that the PPy content in the scaffold should be slightly higher than 3 wt.% but lower than 6 wt.%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. LANGER and J. P. VACANTI, Science 260 (1993) 920.Google Scholar
  2. 2.
    F. G. HEINEKEN and R. SKALAK, J. Biomech. Eng. 113 (1991) 111.Google Scholar
  3. 3.
    R. M. NEREM, Ann. Biomed. Eng. 19 (1991) 529.Google Scholar
  4. 4.
    K. T. PAIGE and C. A. VACANTI, Tissue Eng. 1 (1995) 97.Google Scholar
  5. 5.
    E. B. DENKBAS, M. SEYYAL and E. PISKIN, J. Membr. Sci. 172 (2000) 33.CrossRefGoogle Scholar
  6. 6.
    S. W. SHALABY, Biomedical Polymers, New York: Hanser Publishers, 1994.Google Scholar
  7. 7.
    L. LI, S. DING and C. ZHOU, J. Appl. Polym. Sci. 91 (2004) 274.Google Scholar
  8. 8.
    J. YANG, G. SHI, J. BEI, S. WANG, Y. CAO, Q. SHANG, G. YANG and W. WANG, J. Biomed. Mater. Res. 62 (2002) 438.Google Scholar
  9. 9.
    T. RATHKE and S. HUDSON, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C34 (1994) 375.Google Scholar
  10. 10.
    C. BRINE, P. SANDFORD and J. ZIKAKIS, Advances in Chitin and Chitosan, Elsevier Applied Science, New York, 1992.Google Scholar
  11. 11.
    R. A. A. MUZZARELLI and M. G. PETER, Chitin Handbook, European Chitin Society, Italy: Grottammare, 1997.Google Scholar
  12. 12.
    G. BORCHARD, Adv. Drug Delivery Rev. 52 (2001) 145.CrossRefGoogle Scholar
  13. 13.
    S. V. MADIHALLY and H. M. T. MATTHEW, Biomaterials, 20 (1999) 1133.CrossRefGoogle Scholar
  14. 14.
    C. E. SCHMIDT, V. R. SHASTRI, J. P. VACANTI and R. LANGER, Proc. Natl. Acad. Sci. USA 94 (1997) 8948.Google Scholar
  15. 15.
    B. GARNER, A. GEORGEVICH, A.J. HODGSON, L. LIU and G.G. WALLACE, J. Biomed. Mater. Res. 44 (1999) 121.CrossRefGoogle Scholar
  16. 16.
    R. F. VALENTINI, T. G. VARGO, J. A. GARDELLA JR and P. AEBISCHER, Biomaterials 13 (1992) 193.CrossRefGoogle Scholar
  17. 17.
    A. KOTWAL and C.E. SCHMIDT, Biomaterials 22 (2001) 1055.CrossRefGoogle Scholar
  18. 18.
    E. DE GIGLIO, L. SABBATINI and P.G. ZAMBONIN, J. Biomater. Sci. Polym. Ed. 10 (1999) 845.Google Scholar
  19. 19.
    T. AOKI, M. TANINO, N. OGATA and K. KUMAKURA, Biomaterials. 17 (1996) 1971.CrossRefGoogle Scholar
  20. 20.
    J.Y. WONG, R. LANGER and D.E. INGBER, Proc. Natl. Acad. Sci. USA. 91 (1994) 3201.Google Scholar
  21. 21.
    R. L. WILLIAMS and P. J. DOHERTY, J. Mater. Sci. Mater. Med. 5 (1994) 429.CrossRefGoogle Scholar
  22. 22.
    E. KHOR and J. L. H. WHEY, Carbohydr. Polym. 26 (1995) 183.CrossRefGoogle Scholar
  23. 23.
    Y. LAM, K. S. CHOW and E. KHOR, J. Polym. Res. 6 (1999) 203.Google Scholar
  24. 24.
    MACHIDA, S. MIYATA and A. TECHAGUMPUCH, Synth. Met. 31 (1989) 311.Google Scholar
  25. 25.
    A. MOHAMMADI, D. W. PAUL, O. INGANAS, J. O. NILSSON and I. LUNDSTORM, J. Polym. Sci. Polym. Phys. 32 (1994) 495.Google Scholar
  26. 26.
    F. YAN, G. XUE and M. ZHOU, J. Appl. Polym. Sci. 77 (2000) 135.CrossRefGoogle Scholar
  27. 27.
    Y. WAN, H. WU and D. WEN, Macromol. Biosci. 4 (2004) 882.CrossRefGoogle Scholar
  28. 28.
    S. B. RAO and C. P. SHARMA, J. Biomed. Mater. Res. 34 (1997) 21.CrossRefGoogle Scholar
  29. 29.
    J. N. SADDLER and M. H. PENNER, Enzymatic Degradation of Insoluble Carbohydrates, ACS Symposium Series 618, Washington: American Chemical Society, 1995.Google Scholar
  30. 30.
    R. A. A. MUZZARELLI, C. JEUNIAUX, and G. W. GOODAY, Chitin in Nature and Technology, New York: Plenum, 1986, p.385.Google Scholar
  31. 31.
    S. C. TAN, E. KHOR, T. K. TAN and S. M. WONG, Talanta 45 (1998) 713.CrossRefGoogle Scholar
  32. 32.
    Y. WAN, K. A. M. CREBER, B. PEPPLEY, and V. T. BUI, Polymer 44 (2003) 1057.Google Scholar
  33. 33.
    F. CHELLAT, M. TABRIZIAN, S. DUMIYRIU, E. CHORNET, C. RIVARD and L. YAHIA, J. Biomed. Mater. Res. 53 (2000) 592.CrossRefGoogle Scholar
  34. 34.
    Z. WANG, C. ROBERGE, L.H. DAO, Y. WAN, G. SHI, M. ROUABHIA, R. GUIDOIN and Z. ZHANG, J. Biomed. Mater. Res. 70A (2004) 28.CrossRefGoogle Scholar
  35. 35.
    Y. MAROIS, Z. ZHANG, M. VERT, L. BEAULIEU, R. W. LENZ and R. GUIDOIN, Tissue Eng. 5 (1999) 369.Google Scholar
  36. 36.
    X. JIANG, Y. MAROIS, A. TRAORE, D. TESSIRE, L. H. DAO, R. GUIDOIN and Z. ZHANG, Tissue Eng. 8 (2002) 635.CrossRefGoogle Scholar
  37. 37.
    Z. ZHANG, R. GUIDOIN M. W. KING, T. V. HOW, Y. MAROIS and G. LAROCHE, Biomaterials 16 (1995) 369.Google Scholar
  38. 38.
    Y. WAN, W. HUANG, Z. WANG, X. X. ZHU, Polymer 45 (2004) 71.CrossRefGoogle Scholar
  39. 39.
    F. MI, S. SHYU, Y. WU, S. LEE, J. SHYONG and R. HUANG, Biomaterials. 22 (2001) 165.CrossRefGoogle Scholar
  40. 40.
    K. TOMIHATA and Y. IKADA, Biomaterials 18 (1997) 567.Google Scholar
  41. 41.
    Y. SHIGEMASA, K. SAITO, H. SASHIWA and H. ASIMOTO, Int. J. Biol. Macromol. 16 (1994) 43.CrossRefGoogle Scholar
  42. 42.
    F. SHEN, Y.L. CUI, L. F. YANG, K. D. YAO, X. H. DONG, W. Y. JIA and H. D. SHI, Polym. Int. 49 (2000) 1596.CrossRefGoogle Scholar
  43. 43.
    Z. WANG, C. ROBERGE, Y. WAN, L.H. DAO, R. GUIDOIN. Z. ZHANG, J. Biomed. Mater. Res. 66A (2003) 738.Google Scholar
  44. 44.
    F. MI, H. SUNG, S. SHYU, C. SU and C. PENG, Polymer 44 (2003) 6521.CrossRefGoogle Scholar
  45. 45.
    M. THERRIEN, R. GUIDION, A. ADNOT and R. PAYNTER, Biomaterials 10 (1989) 517.CrossRefGoogle Scholar
  46. 46.
    R. PAYNTER, H. MARTZ and R. GUIDION, ibid. 8 (1987) 94.CrossRefGoogle Scholar
  47. 47.
    R. A. A. MUZZARELLI, M. M. BELMONTE, M. MILIANI, C. MUZZARELLI, F. GABBANELLI and G. BIAGINI, Carbohydr. Polym. 48 (2002) 15.CrossRefGoogle Scholar
  48. 48.
    J. M. KERNS, A. J. FAKHOURI, H. P. WEINRIB and J. A. FREEMAN, Neuroscience 40 (1991) 93.CrossRefGoogle Scholar
  49. 49.
    L. M. KOW and D. W. PFAFF, Brain. Res. 347 (1985) 1.CrossRefGoogle Scholar
  50. 50.
    G. SHI, M. ROUABHIA, Z. WANG, L. H. DAO and Z. ZHANG, Biomaterials 25 (2004) 2477.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Ying Wan
    • 1
    • 5
  • Aixi Yu
    • 2
  • Hua Wu
    • 3
  • Zhaoxu Wang
    • 4
  • Dijiang Wen
    • 5
  1. 1.Department of Chemistry and Chemical EngineeringRoyal Military College of CanadaKingstonCanada
  2. 2.Department of Microsurgery, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
  3. 3.Department of Nuclear Medicine, Xiamen First HospitalFujian Medical UniversityXiamenPeople's Republic of China
  4. 4.Centre de RecherchHopital Saint-Francois d'Assise, CHUQQuebecCanada
  5. 5.School of Materials EngineeringSuzhou UniversitySuzhouPeople's Republic of China

Personalised recommendations