Journal of Materials Science: Materials in Medicine

, Volume 16, Issue 12, pp 1159–1163 | Cite as

Porous Ti6Al4V scaffolds directly fabricated by 3D fibre deposition technique: Effect of nozzle diameter

  • J. P. Li
  • J. R. de Wijn
  • C. A. van Blitterswijk
  • K. de. Groot
Article

Abstract

3D porous Ti6Al4V scaffolds were successfully directly fabricated by a rapid prototyping technology: 3D fibre deposition. In this study, the rheological properties of Ti6Al4V slurry was studied and the flow rate was analyzed at various pressures and nozzle diameters. Scaffolds with different fibre diameter and porosity were fabricated. ESEM observation and mechanical tests were performed on the obtained porous Ti6Al4V scaffolds with regard to the porous structure and mechanical properties. The results show that these scaffolds have 3D interconnected porous structure and a compressive strength which depends on porosity at constant fibre diameters and on the fibre diameter at constant porosity. These Ti6Al4V scaffolds are expected to be constructs for biomedical applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. LONG and H. J. RACK, Biomaterials 19 (1998) 1621.CrossRefGoogle Scholar
  2. 2.
    B. D. WU and Y. F. CUI, Rare Metal Materials Engineering 4 (1988).Google Scholar
  3. 3.
    K. OKAZAKI, W. H. LEE, D. K. KIM and R. A. KOPCZYK, J. Biomed. Mater. Res. 25 (1991) 1417.CrossRefGoogle Scholar
  4. 4.
    S. FUJIBAYASHI, M. NEO, H. M. KIM, T. KOKUBO and T. NAKAMURA, Biomaterials 25 (2004) 443.CrossRefGoogle Scholar
  5. 5.
    J. GALANTE and W. ROSTOKER, J. Biomed. Mater. Res. 4 (1973) 43.Google Scholar
  6. 6.
    J. GALANTE, W. ROSTOKER, and R. LUECK, J. Bone Joint Surg. 53A (1971) 101.Google Scholar
  7. 7.
    J. P. LI, S.H. LI, C. A. VAN BLITTERSWIJK and K. DE GROOT, J.Biomed.Mat.Res. 73A (2005) 223.Google Scholar
  8. 8.
    C. WILSON, J. DE BRUIJN, M. KRUIJT, S. VAN GAALEN, W. V. DHERT, A. and C. A. VAN BLITTERSWIJK, in “Orthopaedic Research Society 47th Annual Meeting.” (San Francisco USA, 2001).Google Scholar
  9. 9.
    M. C. MELICAN, M. C. ZIMMERMAN, M. S. DHILLON, A. R. PONNAMBALAM and J. R. PARSONS, J. Biomed. Mater. Res. 55 (2001) 194.CrossRefGoogle Scholar
  10. 10.
    K. F. LEONG, C. M. CHEAH and C. K. CHUA, Biomaterials 24 (2003) 2363.CrossRefGoogle Scholar
  11. 11.
    R. LANDERS and R. MULHAUPT, Macromol. Mater. Eng. 282 (2000) 17.CrossRefGoogle Scholar
  12. 12.
    R. LANDERS, A. PFISTER, H. JOHN, U. HUBNER, R. SCHMELZEISEN and R. MULHAUPT, J. Mat. Sci. 37 (2002) 3107.CrossRefGoogle Scholar
  13. 13.
    J. P. LI, J. R. DE WIJN, C. A. VAN BLITTERSWIJK and K. DE GROOT, {submitted}. (2005).Google Scholar
  14. 14.
    R. LANDERS and R. MULHAUPT, Macromol. Mater. Eng. 282 (2000) 17.CrossRefGoogle Scholar
  15. 15.
    G. VOZZI, Tissue Eng. 8 (2003) 1089.Google Scholar
  16. 16.
    L. J. GIBSON and M. F. ASHBY, “Cellular Solids: Structure and Properties,” second ed. (Cambridge: Cambridge University Press, 1997).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • J. P. Li
    • 1
    • 2
  • J. R. de Wijn
    • 1
  • C. A. van Blitterswijk
    • 1
  • K. de. Groot
    • 1
  1. 1.Institute for Biomedical TechnologyUniversity of TwenteEnschedeThe Netherlands
  2. 2.PoroGen B.VEnschedeThe Netherlands

Personalised recommendations