Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 16, Issue 12, pp 1131–1136 | Cite as

Soluble phosphate glass fibres for repair of bone-ligament interface

  • M. Bitar
  • J. C. Knowles
  • M. P. Lewis
  • V. Salih
Article

Abstract

Phosphate-based fibres of the generic composition (CaO)0.46–(Na2O) n –(Fe2O3) y –(P2O5)0.50 have been evaluated, in vitro, as three dimensional scaffolds for tissue engineering of the hard-soft tissue interface by assessing the fibre solubility and growth and functional gene expression of human cells. Primary human osteoblasts and fibroblasts were seeded onto scaffolds and maintained in culture for up to 21 days. Fluorescent immunolabeling revealed the spread cell morphology and significant proliferation pattern on these fibres, particularly on the 3 mol% Fe2O3-containing formulation. Real-time quantitative Polymerase Chain Reaction (rtQ-PCR) analysis of gene expression using TaqMan® Probes was preformed and it has been established that committed cell differentiation was maintained by both cell types, and was strongly related to the 3 mol% Fe2O3 glass composition. These novel, readily manufactured, soluble glass fibres offer a biocompatible and biochemically favourable alternative in the search for suitable degradable materials used in Tissue Engineering.

Keywords

Fe2O3 Na2O Quantitative Polymerase Chain Reaction Phosphate Glass Soluble Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. L. WOO, T. M. VOGRIN and S. D. ABRAMOWITCH, J. Am. Acad. Orthop. Surg. 8 (2000) 364.Google Scholar
  2. 2.
    J. C. KNOWLES, J. Mater. Chem. 13 (2003) 2395.CrossRefGoogle Scholar
  3. 3.
    V. SALIH, I. J. JALISI, D. LEE, K. FRANKS, G. W. HASTINGS, J. C. KNOWLES and I. OLSEN, Bioceramics 11 (1998) 269.Google Scholar
  4. 4.
    V. SALIH, K. FRANKS, M. JAMES, G. W. HASTINGS, J. C. KNOWLES and I. OLSEN J. Mater. Sci.: Mater. Med. 11 (2000) 615.CrossRefGoogle Scholar
  5. 5.
    V. SALIH, G. GEORGIOU, J. C. KNOWLES and I. OLSEN, Biomaterials, 22 (2001) 2817.CrossRefGoogle Scholar
  6. 6.
    K. FRANKS, V. SALIH, J. C. KNOWLES and I. OLSEN, J. Mater. Sci.: Mater. Med. 13 (2002) 549.CrossRefGoogle Scholar
  7. 7.
    I. AHMED, M. LEWIS, I. OLSEN and J. C. KNOWLES, Biomaterials 25 (2004) 491.Google Scholar
  8. 8.
    I. AHMED, M. LEWIS, I. OLSEN and J. C. KNOWLES, Biomaterials 25 (2004) 501.Google Scholar
  9. 9.
    V. SALIH, J. C. KNOWLES, M. J. ÓHARE and I. OLSEN, Cell. Tissue Res. 304 (2001) 371.CrossRefGoogle Scholar
  10. 10.
    G. L. POLYZOIS, A. HENSTEN-PETTERSEN and A. KULLMANN, J. Prosthet. Dent. 71 (1994) 500.Google Scholar
  11. 11.
    J. A. COOPER, H. H. LU, F. K. KO, J. W. FREEMAN and C. T. LAURENCIN, Biomaterials 26 (2005) 1523.CrossRefGoogle Scholar
  12. 12.
    A. J. SALGADO, O. P. COUTINHO and R. L. REIS, Macromol. Biosci. 4 (2004) 743.CrossRefGoogle Scholar
  13. 13.
    T. V. THAMARAISELV. I. and S. RAJESWARI, Trends. Biomater. Artif. Organs 18 (2004) 9.Google Scholar
  14. 14.
    L. L. HENCH and J. K. WEST, Life Chemistry Reports 13 (1996) 187.Google Scholar
  15. 15.
    J. E. GOUGH, P. CHRISTIAN, C. A. SCOTCHFORD, C. D. RUDD and I. A. JONES, J. Biomed. Mater. Res. 59 (2002) 481.CrossRefGoogle Scholar
  16. 16.
    J. E. GOUGH, P. CHRISTIAN, C. A. SCOTCHFORD and I. A. JONES, J. Biomed. Mater. Res. A 66 (2003) 233.Google Scholar
  17. 17.
    R. SHAH, A. C. SINANAN, J. C. KNOWLES, N. P. HUNT and M. P. LEWIS, Biomaterials 26 (2005) 1497.CrossRefGoogle Scholar
  18. 18.
    K. A. BENINGO, M. DEMBO and Y. L. WANG, Proc. Natl. Acad. Sci. 101 (2004) 18024.CrossRefGoogle Scholar
  19. 19.
    P. V. HAUSCHKA, J. B. LIAN, D. E. COLE and C. M. GUNDBERG, Physiol Rev. 69 (1989) 990.Google Scholar
  20. 20.
    G. KARSENTY, Semin. Cell Dev. Biol. 11 (2000) 343.CrossRefGoogle Scholar
  21. 21.
    H. SAGE, R. B. VERNON, S. E. FUNK, E. A. EVERITT and J. ANGELLO, J. Cell. Biol. 109 (1989) 341.CrossRefGoogle Scholar
  22. 22.
    J. D. TERMINE, H. K. KLEINMAN, S. W. WHITSON, K. M. CONN, M. L. MCGARVEY and G. R. MARTIN, Cell 26 (1981) 99.CrossRefGoogle Scholar
  23. 23.
    C. B. FRANK, J. Musculoskelet. Neuronal. Interact. 4 (2004) 199.Google Scholar
  24. 24.
    M. G. PATINO, M. E. NEIDERS, S. ANDREANA, B. NOBLE and R. E. COHEN, Implant. Dent. 11 (2002) 280.Google Scholar
  25. 25.
    M. KJAER, Physiol. Rev. 84 (2004) 649.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. Bitar
    • 1
  • J. C. Knowles
    • 1
  • M. P. Lewis
    • 1
  • V. Salih
    • 1
  1. 1.Department of Biomaterials/Tissue Engineering, Eastman Dental InstituteUniversity College London (UCL)LondonUK

Personalised recommendations