Journal of Materials Science: Materials in Medicine

, Volume 16, Issue 12, pp 1099–1104 | Cite as

Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering

  • K. TuzlakogluEmail author
  • N. Bolgen
  • A. J. Salgado
  • M. E. Gomes
  • E. Piskin
  • R. L. Reis


One possible interesting way of designing a scaffold for bone tissue engineering is to base it on trying to mimic the biophysical structure of natural extracellular matrix (ECM). This work was developed in order to produce scaffolds for supporting bone cells. Nano and micro fiber combined scaffolds were originally produced from starch based biomaterials by means of a fiber bonding and a electrospinning, two step methodology. The cell culture studies with SaOs-2 human osteoblast-like cell line and rat bone marrow stromal cells demonstrated that presence of nanofibers influenced cell shape and cytoskeletal organization of the cells on the nano/micro combined scaffolds. Moreover, cell viability and Alkaline Phosphatase (ALP) activity for both cell types was found to be higher in nano/micro combined scaffolds than in control scaffolds based on fiber meshes without nanofibers.

Consequently, the developed structures are believed have a great potential on the 3D organization and guidance of cells that is provided for engineering of 3-dimensional bone tissues.


Bone Marrow Stromal Cell Bone Tissue Engineering Cell Culture Study Cytoskeletal Organization Step Methodology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. GOMES and R. L. REIS, Macromol. Biosci. 4 (2004) 737.CrossRefGoogle Scholar
  2. 2.
    X. LIU and P. X. MA, Annals of Biomedical Eng. 32 (2004) 477.Google Scholar
  3. 3.
    M. P. LUTOLF and J. A. HUBBELL, Nat. Biotechol. 23 (2005) 47.CrossRefGoogle Scholar
  4. 4.
    Z. M. HUANG, Y. Z. ZHANG, M. KOTAKI and S. RAMAKRISHNA, Composites Sci. and Technology 63 (2003) 2223Google Scholar
  5. 5.
    D. LI and Y. XIA, Advanced Mater. 16 (2004) 1151.Google Scholar
  6. 6.
    J. A. MATTHEWS, G. E. WNEK, D. G. SIMPSON and G. L. BOWLIN, Biomacromolecules 3 (2002) 232.CrossRefGoogle Scholar
  7. 7.
    K. OHKAWA, D. CHA, H. KIM, A. NISHIDA and H. YAMAMOTO, Macromol. Rapid Commun. 25 (2004) 1600.CrossRefGoogle Scholar
  8. 8.
    B. MIN, S. W. LEE, J. N. LIM, Y. YOU, T. S. LEE, P. H. KANG and W. H. PARK, Polymer 45 (2004) 7137.CrossRefGoogle Scholar
  9. 9.
    H. J. JIN, S. V. FRIDRIKH, G. C. RUTLEDGE and D. L. KAPLAN, Biomacromolecules 3 (2002) 1233.CrossRefGoogle Scholar
  10. 10.
    W. K. SON, J. H. YOUK, T. S. LEE and W. H. PARK, Polymer 45 (2004) 2959.CrossRefGoogle Scholar
  11. 11.
    W. LI, C. T. LAURENCIN, E. J. CATERSON, R. S. TUAN and F. K. KO, J. Biomed. Mater. Res. 60 (2002) 613.Google Scholar
  12. 12.
    F. YANG, R. MURUGAN, S. WANG and S. RAMAKRISHNA, Biomaterials 26 (2005) 2603.Google Scholar
  13. 13.
    H. YOSHIMOTO, Y. M. SHIN, H. TERAI and J.P. VACANTI, ibid. 24 (2003) 2077.CrossRefGoogle Scholar
  14. 14.
    W. LI, K. G. DANIELSON, P. G. ALEXANDER and R. S. TUAN, J. Biomed. Mater. Res. Part A 67A (2003) 1105.Google Scholar
  15. 15.
    S. KIDOAKI, I. K. KWON and T. MATSUDA, Biomaterials 26 (2005) 37.CrossRefGoogle Scholar
  16. 16.
    W. LI, R. TULI, X. HUANG, P. LAQUERRIERE and R. S. TUAN, ibid. 26 (2005) 5158.Google Scholar
  17. 17.
    H. JIN, J. CHEN, V. KARAGEORGIOU, G. H. ALTMAN and D. KAPLAN, ibid. 25 (2004) 1039.CrossRefGoogle Scholar
  18. 18.
    M. E. GOMES, R. L. REIS and A. M. CUNHA, Mater. Sci. Eng. C: Biomimet. Supramolec. Syst. 20 (2002) 19.Google Scholar
  19. 19.
    M. E. GOMES, V. I. SIKAVITSAS, E. BEHRAVESH, R. L. REIS and A. G. MIKOS, J. Biomed. Mater. Res. Part A 67A (2003) 87.CrossRefGoogle Scholar
  20. 20.
    F. ROSSO, A. GIORDANO, M. BARBARISI and A. BARBARISI, J. Cellul. Phys. 199 (2004) 174.Google Scholar
  21. 21.
    A. CURTIS and C. WILKINSON, Biomaterials 18 (1997) 1573.CrossRefGoogle Scholar
  22. 22.
    C. T. LAURENCIN, A. M. A. AMBROSIO, M. D. BORDEN and J. A. COOPER, Annu. Rev. Biomed. Eng. 1 (1999) 46.CrossRefGoogle Scholar
  23. 23.
    H. HARRIS, Clinica Chimica Acta 186 (1989) 133.Google Scholar
  24. 24.
    T. STIGBRAND “Present Status and Future Trends of Human Alkaline Phosphatases. Human Alkaline Phosphatases.” (Alan R. Liss, New York, 1984) p.3.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • K. Tuzlakoglu
    • 1
    • 2
    • 3
    Email author
  • N. Bolgen
    • 3
  • A. J. Salgado
    • 1
    • 2
  • M. E. Gomes
    • 1
    • 2
  • E. Piskin
    • 3
  • R. L. Reis
    • 1
    • 2
  1. 1.3B's Research Group—Biomaterials, Biodegradables and BiomimeticsUniv. MinhoBragaPortugal
  2. 2.Department of Polymer EngineeringUniversity of MinhoPortugal
  3. 3.Chem. Eng. Dept. and Bioeng. Div. and TÜBİTAK-Biyomedtek: Center for Biomedical Technologies, BeytepeHacettepe Univ.AnkaraTurkey

Personalised recommendations