Characterization and bond strength of electrolytic HA/TiO2 double layers for orthopaedic applications



Insufficient bonding of juxtaposed bone to an orthopaedic/dental implant could be caused by material surface properties that do not support new bone growth. For this reason, fabrication of biomaterials surface properties, which support osteointegration, should be one of the key objectives in the design of the next generation of orthopaedic/dental implants. Titanium and titanium alloy have been widely used in several bioimplant applications, but when implanted into the human body, these still contain some disadvantages, such as poor osteointegration (forming a fibrous capsule), wear debris and metal ion release, which often lead to clinical failure. Electrolytic hydroxyapatite/titanium dioxide (HA/TiO2) double layers were successfully deposited on titanium substrates in TiCl4 solution and subsequently in the mixed solution of Ca(NO3)2 and NH4H2PO4, respectively. After annealing at 300∘C for 1 h in the air, the coated specimens were evaluated by dynamic cyclic polarization tests, immersion tests, tensile tests, surface morphology observations, XRD analyses and cells culture. The adhesion strength of the HA coating were improved by the intermediate coating of TiO2 from 11.3 to 46.7 MPa. From cell culture and immersion test results, the HA/TiO2 coated specimens promoted not only cells differentiation, but also appeared more bioactive while maintaining non-toxicity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. WATARI, A. YOKOYAMA, F. SASO, M. UO and T. KAWASAKI, Composites Part B: Eng. 28B (1997) 5.CrossRefGoogle Scholar
  2. 2.
    P. L. BATAILLON, F. MONCHAU, M. BIGERELLE and H. F. HILDEBRAND, Biomol. Eng. 19 (2002) 133.CrossRefPubMedGoogle Scholar
  3. 3.
    C. H. KU, D. P. PIOLETTI, M. BROWNE and P. J. GREGSON, Biomaterials 23 (2002) 1447.CrossRefPubMedGoogle Scholar
  4. 4.
    I. DEGASNE, M. F. BASLE, V. DEMAIS, G. HURE, M. LESOURD, B. GROLLEAU, L MERCIER and D. CHAPPARD, Calcif. Tissue Int. 64 (1999) 499.CrossRefPubMedGoogle Scholar
  5. 5.
    X. NIE, A. LEYLAND and A. MATTHEWS, Surf. Coat. Technol. 125 (2000) 407.CrossRefGoogle Scholar
  6. 6.
    H. KURZWEG, R. B. HEIMANN, T. TROCZYNSKI and M. L. WAYMAC, Biomaterials 19 (1998) 1507.CrossRefPubMedGoogle Scholar
  7. 7.
    D. J. LI, K. OHSAKI, K. LI, PC. CUI, O. YE, K. BABA, Q. C. WANG, S. TENSIN and T. Y. TERUKO, J. Biomed. Mater. Res. 45 (1999) 322.CrossRefPubMedGoogle Scholar
  8. 8.
    A. M. EKTESSABI and H. KIMURA, Thin Solid Films. 270 (1995) 335.CrossRefGoogle Scholar
  9. 9.
    G. K. DE, R. GEESINK, CPAT. KLEIN and P. SEREKIAN, J. Biomed. Mater. Res. 121 (1987) 1357.Google Scholar
  10. 10.
    R. MCPHERSON and N. GANE, J. Mater. Sci.: Mater. Med. 6 (1995) 327.CrossRefGoogle Scholar
  11. 11.
    H. KURZWEG and R. B. HEIMANN, Biomaterials 19 (1998) 1507.CrossRefPubMedGoogle Scholar
  12. 12.
    K. V. DIJK, H. G. SCHAEKEN, J. G. G. WOLKE and J. A. JANSEN, ibid. 17 (1998) 159.Google Scholar
  13. 13.
    O. YOSHINO and M. MASAMICHI, Surf. Coat. Technol. 65 (1994) 224.CrossRefGoogle Scholar
  14. 14.
    C. K. WANG and L. J. H. CHERN, Biomaterials 18 (1997) 1331.CrossRefPubMedGoogle Scholar
  15. 15.
    R. DAMODARAN and B. M. MOUDGIL, Coll. Surf. A: Physicochem. Eng. Aspects 80 (1993) 191.CrossRefGoogle Scholar
  16. 16.
    W. WENG and J. L. BAPTISTA, J. Am. Ceram. Soc. 82 (1999) 27.Google Scholar
  17. 17.
    W. WENG and J. L. BAPTISTA, J. Mater. Sci.: Mater. Med. 9 (1998) 159.CrossRefGoogle Scholar
  18. 18.
    H. HERO, H. WIE and R. B. JORGENSEN, J. Biomed. Mater. Res. 28 (1994) 343.CrossRefPubMedGoogle Scholar
  19. 19.
    P. G. BRADFORD, J. M. MAGLISH, A. S. PONTICELLI and K. L. KIRKWOOD, Arch. Oral Biol. 45 (2000) 159.CrossRefPubMedGoogle Scholar
  20. 20.
    Designation: C-633. Standard test method for adhesion of cohesive strength of flame-sprayed coatings, “Annual Book of ASTM Standards,” (American Society for testing and materials, Philadelphua, PA, 1993) Vol. 3.01, p. 665.Google Scholar
  21. 21.
    H. M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 38 (1997) 121.CrossRefPubMedGoogle Scholar
  22. 22.
    T. KOKUBO, H. M. KIM and M. KAWASHITA, Biomaterials 24 (2003) 2161.CrossRefPubMedGoogle Scholar
  23. 23.
    S. K. YEN and C. M. LIN, J. Electrochem. Soc. 149 (2002) 79.CrossRefGoogle Scholar
  24. 24.
    K. L. KIRKWOOD, R. DZIAK and P. G. BRADFORD, J. Bone Mineral. Res. 11 (1996) 1889.Google Scholar
  25. 25.
    P. A. RAMIRES, A. ROMITO, F. COSENTINO and E. MILELLA, Biomaterials 22 (2001) 1467.CrossRefPubMedGoogle Scholar
  26. 26.
    O. H. LOWRY, N. R. ROBERTS, M. L. WU, W. S. HIXON and E. J. CRAWFORD, J. Biomed. Chem. 207 (1954) 19.Google Scholar
  27. 27.
    R. J. MAJESKA, J. T. RYABY and T. A. EINHORN, J. Orth. Res. 20 (2002) 281.CrossRefGoogle Scholar
  28. 28.
    S. K. YEN and C. M. LIN, Mater. Chem. Phys. 77 (2002) 70.CrossRefGoogle Scholar
  29. 29.
    C. M. LIN and S. K. YEN, in Proceedings of the 8th Biomedical Materials and Technology Symposium, Taiwan, ROC September (2003) p. A101.Google Scholar
  30. 30.
    A. BEN-ZE’EV, Curr. Opin. Cell Biol. 9 (1997) 99.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Materials EngineeringNational Chung Hsing UniversityTaichungRepublic of China

Personalised recommendations