Osteoblast cell adhesion on a laser modified zirconia based bioceramic



Due to their attractive mechanical properties, bioinert zirconia bioceramics are frequently used in the high load-bearing sites such as orthopaedic and dental implants, but they are chemically inert and do not naturally form a direct bond with bone and thus do not provide osseointegration. A CO2 laser was used to modify the surface properties with the aim to achieve osseointegration between bioinert zirconia and bone. The surface characterisation revealed that the surface roughness decreased and solidified microstructure occurred after laser treatment. Higher wettability characteristics generated by the CO2 laser treatment was primarily due to the enhancement of the surface energy, particularly the polar component, determined by microstructural changes. An in vitro test using human fetal osteoblast cells (hFOB) revealed that osteoblast cells adhere better on the laser treated sample than the untreated sample. The change in the wettability characteristics could be the main mechanism governing the osteoblast cell adhesion on the YPSZ.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. S. CHRISTEL, Bull. Hosp. Joint Diseas. Orthop. Inst. 49 (1989) 170.Google Scholar
  2. 2.
    J. LI and G. W. HASTINGS, “Oxide Bioceramics: Inert Ceramic Materials in Medicine and Dentistry,” Chapman & Hall: London, New York (1998) p. 340.Google Scholar
  3. 3.
  4. 4.
    T. J. WEBSTER, R. W. SIEGEL and R. BIZIOS, Biomaterials 20 (1999) 1221.CrossRefPubMedGoogle Scholar
  5. 5.
    D. A. PULEO and R. BIZIOS, J. Biomed. Mater. Res. 26 (1992) 291.CrossRefPubMedGoogle Scholar
  6. 6.
    H. MIRZADEH, A. A. KATBAB and R. P. BURFORD, Rad. Phy. Chem. 46 (1995) 859.CrossRefGoogle Scholar
  7. 7.
    H. MIRZADEH, A. A. KATBAB, M. T. KHORASANI, R. P. BURFORD, E. GORGIN and A. GOLESTANI, Biomaterials 16 (1995) 641.CrossRefPubMedGoogle Scholar
  8. 8.
    M. DADSETAN, H. MIRZADEH, N. SHARIFI-SANJANI and M. DALIRI, J. Biomed. Mater. Res. 57 (2001) 183.CrossRefPubMedGoogle Scholar
  9. 9.
    L. HAO and J. LAWRENCE, J. Phys. D. 36 (2003) 1292.CrossRefGoogle Scholar
  10. 10.
    L. HAO and J. LAWRENCE, Colloids Surf. B: Biointerf. 34 (2004) 87.CrossRefGoogle Scholar
  11. 11.
    L. HAO and J. LAWRENCE, J. Biomed. Mater. Res. 69A (2004) 748.CrossRefGoogle Scholar
  12. 12.
    L. HAO and J. LAWRENCE, Mate. Sci. Engng. C 23 (2003) 627.CrossRefGoogle Scholar
  13. 13.
    L. HAO, J. LAWRENCE and K. S. CHIAN, J. Biomater. Appl. 19 (2004) 81.CrossRefPubMedGoogle Scholar
  14. 14.
    N. K. ADAM and G. E. P. ELLIOTT, J. Chem. Soc. 18 (1958) 2206.Google Scholar
  15. 15.
    F. M. FOWKES, Ind. Eng. Chem. 56 (1964) 40.CrossRefGoogle Scholar
  16. 16.
    J. R. DANN, J. Colloid Interf. Sci. 32 (1970) 302.CrossRefGoogle Scholar
  17. 17.
    S. AGATHOPOULOS and P. NIKOLOPOULOS, J. Biomed. Mater. Res. 29 (1995) 421.CrossRefPubMedGoogle Scholar
  18. 18.
    J. LAWRENCE and L. LI, J. Phys. D 32 (1999) 1075.CrossRefGoogle Scholar
  19. 19.
    J. LAWRENCE, L. LI and J. T. SPENCER, Appl. Surf. Sci. 138/139 (1999) 388.CrossRefGoogle Scholar
  20. 20.
    Y. T. PEI, J. H. OUYANG and T. C. LEI, Surf. Coat. Techn. 81 (1996) 131.CrossRefGoogle Scholar
  21. 21.
    Z. LIU, “Surface Modification of Materials Using High Power Lasers and An Arc Image Intensifier,” PhD Thesis, University of Liverpool, 1991.Google Scholar
  22. 22.
    L. HAO and J. LAWRENCE, in Proceedings of the IMechE Part B, J. Eng. Manufacture. (2004) vol. 218.Google Scholar
  23. 23.
    R. W. MCCALLUM, M. J. KRAMER and S. T. WEIR, IEEE Trans. Appl. Supercond. 3 (1993) 1147.CrossRefGoogle Scholar
  24. 24.
    R. N. WENZEL, Ind. Eng. Chem. 28 (1936) 988.CrossRefGoogle Scholar
  25. 25.
    T. UELZEN and J. MULLER, Thin Solid Films 434 (2003) 311.CrossRefGoogle Scholar
  26. 26.
    J. LAWRENCE, Proc. Royal Soc. London, Series A 458 (2002) 2445.Google Scholar
  27. 27.
    L. HAO and J. LAWRENCE, Mater. Sci. Engng. A. 364 (2003) 171.CrossRefGoogle Scholar
  28. 28.
    Idem., J. Laser Appl. Submitted for publication (2003).Google Scholar
  29. 29.
    A. W. NEUMANN, Adv. Colloid Interf. Sci. 4 (1974) 106.Google Scholar
  30. 30.
    D. K. CHATTORAJ and K. S. BIRDI, “Adsorption and the Gibbs Surface Excess” (Plenum Press: New York, 1984) p. 95.Google Scholar
  31. 31.
    X. M. ZHANG, T. M. YUE and H. C. MAN, Mater. Lett. 30 (1997) 327.CrossRefGoogle Scholar
  32. 32.
    B. FENG, J. WENG, B. C. YANG, S. X. QU and X. D. ZHANG, Biomaterials 24 (2003) 4663.CrossRefPubMedGoogle Scholar
  33. 33.
    H. OHGUSHI, Y. DOHI, T. YOSHIKAWA, S. TAMAI, S. TABATA, K. OKUNAGA and T. SHIBUYA, J. Biomed. Mater. Res. 32 (1996) 341.CrossRefPubMedGoogle Scholar
  34. 34.
    D. D. DELIGIANNI, N. D. KATSALA, P. G. KOUTSOUKOS and Y. F. MISSIRLIS. Biomaterials 22 (2001) 87.PubMedGoogle Scholar
  35. 35.
    M. AHMAD, D. GAWRONSKI, J. BLUM, J. GOLDBERG and G. GRONOWICZ, J. Biomed. Mater. Res. 46 (1999) 121.CrossRefPubMedGoogle Scholar
  36. 36.
    B. KASEMO and J. GOLD, Adv. Dent. Res. 13 (1999) 8.PubMedGoogle Scholar
  37. 37.
    B. CHEHROUDI, J.-L. QU and D. M. BRUNETTE, “Effects of Implant Surface Topography on Osteogenesis,” in: Proceedings of the 5th World Biomaterials Congress, May 29-Jun 2 1996 (Toronto, Canada, 1996).Google Scholar
  38. 38.
    H. MIRZADEH and M. DADSETAN, Radiation Phys. Chem. 67 (2003) 381.CrossRefGoogle Scholar
  39. 39.
    J. M. SCHAKENRAAD, H. J. BUSSCHER, C. R. H. WILDEVUUR and J. ARNDS, J. Biomed. Mater. Res. 20 (1986) 773.CrossRefPubMedGoogle Scholar
  40. 40.
    S. A. REDEY, M. NARDIN, D. BERNACHE-ASSOLANT, C. REY, P. DELANNOY, L. SEDEL and P. J. MARIE, J. Biomed. Mater. Res. 50 (2000) 353.CrossRefPubMedGoogle Scholar
  41. 41.
    C. A. SCOTCHFORD, E. COOPER, G. J. LEGGETT and S. DOWNES, ibid. 41 (1998) 431.CrossRefPubMedGoogle Scholar
  42. 42.
    R. L. PRICE, M. C. WAID, K. M. HABERSTROH and T. J. WEBSTER, Biomaterials 24 (2003) 1877.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Wolfson School of Mechanical and Manufacturing Engineering, Rapid Manufacturing Research GroupLoughborough UniversityUK
  2. 2.Manufacturing Engineering Division, School of Mechanical & Production EngineeringNanyang Technological University (NTU)Singapore

Personalised recommendations