An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression



A hydrogel intervertebral disc (IVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n = 4) on different samples (N = 2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological IVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs.


Intervertebral Disc Axial Compression Vinyl Alcohol Finite Element Software Fluid Loss 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. S. McNALLY and R. G. C. ARRIDGE, J. Biomech. 28 (1995) 53.CrossRefPubMedGoogle Scholar
  2. 2.
    N. BOGDUK, “Clinical anatomy of the Lumbar Spine and Sacrum” (United Kingdom, Churchill Livingstone, 1997).Google Scholar
  3. 3.
    E. J. CHIU, in Proceedings of the 43rd Annual Meeting, Orthopaedic Research Society (San Fransisco, CA, 1997).Google Scholar
  4. 4.
    A. E. BAER, M. W. GRINSTAFF, K. A. SMEDS, L. M. BOYD and L. A. SETTON, in Proceedings of the Bioengineering Conference, ASME, 2001.Google Scholar
  5. 5.
    A. S. HOFFMAN, Adv. Drug Delivery Rev. 43 (2002).Google Scholar
  6. 6.
    A. S. HOFFMAN, Ann NY Acad Sci. 944 (2001) 62.PubMedGoogle Scholar
  7. 7.
    O. WICHTERLE and D. LIM, Nature 185 (1960) 117.Google Scholar
  8. 8.
    D. DARWIS, P. STASICA, M. T. RAZZAK and J. M. ROSIAK, Rad. Phys. Chem. 63 (2002) 539.CrossRefGoogle Scholar
  9. 9.
    L. AMBROSIO, P. A. NETTI, S. IANNACE, J. HUANG and L. NICOLAIS, J. Mater. Sci.: Mater Med. 7 (1996) 251.CrossRefGoogle Scholar
  10. 10.
    Q. B. BAO and P. A. HIGHAM, US Patent 5,192,326 (1993).Google Scholar
  11. 11.
    M. CIACH and J. AWREJCEWICZ, in Proceedings of the European Medical and Biological Engineering Conference, Vienna, 1999.Google Scholar
  12. 12.
    N. D. BROOM and A. OLOYEDE, Biomaterials 19 (1998) 1179.CrossRefPubMedGoogle Scholar
  13. 13.
    A. A. J. GOLDSMITH, A. HAYES and S. E. CLIFT, ABAQUS Users’ Conference, Paris, France, 1995, p. 305.Google Scholar
  14. 14.
    E. WOLFGANG, A. AYHAN and M. BERND, Proc. Appl. Math. Mech. 2 (2003).Google Scholar
  15. 15.
    F. YOSHII, K. MAKUUCHI and D. DARWIS, et al., Rad. Phys. Chem. 46 (1995) 169.CrossRefGoogle Scholar
  16. 16.
    M. KOBAYASHI, J. TOGUCHIDA and M. OKA, Biomaterials 24 (2003) 639.CrossRefPubMedGoogle Scholar
  17. 17.
    J. A. STAMMEN, S. WILLIAMS, D. N. KU and R. E. GULDBERG, ibid. 22 (2001) 799.CrossRefPubMedGoogle Scholar
  18. 18.
    S.-H. HYON and Y. IKADA, US patent No, 4,663,358 (1986).Google Scholar
  19. 19.
    P. SILVA, S. C. DREW, S. CROZIER, M. VEIDT and M. J PEARCY, in Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Sydney [CD-ROM] ISBN 1877040142 paper no. 3677, 2003, p. 4.Google Scholar
  20. 20.
    HIBBIT, KARLSSON and SORENSEN, ABAQUS Theory and User’s Manual, version 6.3 (2002).Google Scholar
  21. 21.
    M. A. BIOT, J. Appl. Phys. 12 (1941) 155.CrossRefGoogle Scholar
  22. 22.
    W. G. SCHERER and R. M. SWIATEK, J. Non-Cryst. Solids 113 (1989) 119.CrossRefGoogle Scholar
  23. 23.
    M. ARGOUBI and A. SHIRAZI-ADL, J. Biomech. 29 (1996) 1331.CrossRefPubMedGoogle Scholar
  24. 24.
    N. D. BROOM and R. FLACHMANN, J. Anatomy 202 (2003) 495.CrossRefGoogle Scholar
  25. 25.
    D. S. MCNALLY and M. A. ADAMS, Spine 17 (1992) 66.PubMedGoogle Scholar
  26. 26.
    J. CASSIDY, A. HILTNER and E. BAER, J. Mater. Sci.: Mater. Med. 1 (1990) 69.CrossRefGoogle Scholar
  27. 27.
    A. L. NACHEMSON, Acta Orthop. Scand. S43 (1960) 12.Google Scholar
  28. 28.
    W. Y. GU, X. G. MAO and R. J. FOSTER, et al., Spine 24 (1999) 2449.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • P. Silva
    • 1
    • 2
  • S. Crozier
    • 3
  • M. Veidt
    • 1
  • M. J. Pearcy
    • 4
  1. 1.Department of Mechanical EngineeringUniversity of QueenslandBrisbaneAustralia
  2. 2.Centre for Magnetic ResonanceUniversity of QueenslandBrisbaneAustralia
  3. 3.School of Electrical Engineering and Information TechnologyUniversity of QueenslandBrisbaneAustralia
  4. 4.School of Mechanical, Manufacturing and Medical EngineeringQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations