Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels

  • J. E. Barralet
  • L. Wang
  • M. Lawson
  • J. T. Triffitt
  • P. R. Cooper
  • R. M. Shelton


Calcium cross-linked sodium alginate hydrogels have several advantageous features making them potentially suitable as tissue engineering scaffolds and this material has been previously used in many biomedical applications. 3D cell culture systems are often very different from 2D petri dish type cultures. in this study the effect of alginate hydrogel architecture was investigated by comparing rat bone marrow cell proliferation and differentiation on calcium cross linked sodium alginate discs and 1mm internal diameter tubes. It was found that bone marrow cell proliferation was diminished as the concentration of alginate in the 2D hydrogel substrates increased, yet proliferation was extensive on tubular alginate constructs with high alginate contents. Alginate gel thickness was found to be an important parameter in determining cell behaviour and the different geometries did not generate significant alterations in BMC differentiation profiles.


Alginate Sodium Alginate Alginate Hydrogel Alginate Content Internal Diameter Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. LYSAGHT and J. REYES, Tissue Eng. 7 (2001) 485.CrossRefPubMedGoogle Scholar
  2. 2.
    X. H. LIU and P. X. MA, Ann Biomed Eng. 32 (2004) 477.CrossRefPubMedGoogle Scholar
  3. 3.
    I. R. MATTHEW, R. M. BROWNE, J. W. FRAME and B. G. MILLAR, Biomaterials 16 (1995) 275.CrossRefPubMedGoogle Scholar
  4. 4.
    J. J. MARLER, A. GUHA, J. ROWLEY, R. KOKA, D. MOONEY, J. UPTON and J. P. VACANTI, Plas. Reconstr. Surg. 105 (2000) 2049.CrossRefGoogle Scholar
  5. 5.
    H. H. TONNESEN and J. KARLSEN, Drug Dev. Ind. Pharm. 28 (2002) 621.Google Scholar
  6. 6.
    H. J. HAUSELMANN, R. J. FERNANDES, S. S. MOK, T. M. SCHMID, J. A. BLOCK, M. B. AYDELOTTE, K. E. KUETTNER and E. J. THONAR, J. Cell. Sci. 17 (1994) 107.Google Scholar
  7. 7.
    L. WANG, R. M. SHELTON, P. R. COOPER, M. LAWSON, J. T. TRIFFITT and J. E. BARRALET, Biomaterials 24 (2003) 3475.CrossRefPubMedGoogle Scholar
  8. 8.
    M. A. LAWSON, J. E. BARRALET, L. WANG, R. M. SHELTON and J. T. TRIFFITT, Tissue Eng. 10 (2004) 1480.PubMedGoogle Scholar
  9. 9.
    T. JACKS and R. A. WEINBERG, Cell 111 (2002) 923.CrossRefPubMedGoogle Scholar
  10. 10.
    H. K. DHIMAN, A. R. RAY and A. K. PANDA, Biomaterials 26 (2005) 979.CrossRefPubMedGoogle Scholar
  11. 11.
    K. A. TAYLOR and J. G. BUCHANANSMITH, Anal. Biochem. 201 (1992) 190.CrossRefPubMedGoogle Scholar
  12. 12.
    C. MANIATOPOULOS, J. SODEK and A. H. MELCHER, Cell Tissue Res. 254(1988) 317.CrossRefPubMedGoogle Scholar
  13. 13.
    A. K. HARRIS, P. WILD and D. STOPAK, Science 208 (1980) 177.PubMedGoogle Scholar
  14. 14.
    P. EISELT, J. YEH, R. K. LATVALA, L. D. SHEA and D. J. MOONEY, Biomaterials 21 (2000) 1921.CrossRefPubMedGoogle Scholar
  15. 15.
    K. HISHIKAWA, S. MIURA, T. MARUMO, H. YOSHIOKA, Y. MORI, T. TAKATO and T. FUJITA, Biochem. Biophys. Res. Comm. 317 (2004) 1103.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • J. E. Barralet
    • 1
  • L. Wang
    • 2
  • M. Lawson
    • 3
  • J. T. Triffitt
    • 3
  • P. R. Cooper
    • 2
  • R. M. Shelton
    • 2
  1. 1.Faculty of DentistryMcGill UniversityMontrealQuebecCanada
  2. 2.Biomaterials Unit, School of DentistryUniversity of BirminghamBirminghamUK
  3. 3.Nuffield Department of Orthopaedic SurgeryUniversity of OxfordOxfordUK

Personalised recommendations