Advertisement

Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation

  • H. Zimmermann
  • D. Zimmermann
  • R. Reuss
  • P. J. Feilen
  • B. Manz
  • A. Katsen
  • M. Weber
  • F. R. Ihmig
  • F. Ehrhart
  • P. Geßner
  • M. Behringer
  • A. Steinbach
  • L. H. Wegner
  • V. L. Sukhorukov
  • J. A. Vásquez
  • S. Schneider
  • M. M. Weber
  • F. Volke
  • R. Wolf
  • U. Zimmermann
Article

Abstract

The concept of encapsulated-cell therapy is very appealing, but in practice a great deal of technology and know-how is needed for the production of long-term functional transplants. Alginate is one of the most promising biomaterials for immunoisolation of allogeneic and xenogeneic cells and tissues (such as Langerhans islets). Although great advances in alginate-based cell encapsulation have been reported, several improvements need to be made before routine clinical applications can be considered. Among these is the production of purified alginates with consistently high transplantation-grade quality. This depends to a great extent on the purity of the input algal source as well as on the development of alginate extraction and purification processes that can be validated. A key engineering challenge in designing immunoisolating alginate-based microcapsules is that of maintaining unimpeded exchange of nutrients, oxygen and therapeutic factors (released by the encapsulated cells), while simultaneously avoiding swelling and subsequent rupture of the microcapsules. This requires the development of efficient, validated and well-documented technology for cross-linking alginates with divalent cations. Clinical applications also require validated technology for long-term cryopreservation of encapsulated cells to maintaining a product inventory in order to meet end-user demands. As shown here these demands could be met by the development of novel, validated technologies for production of transplantation-grade alginate and microcapsule engineering and storage. The advances in alginate-based therapy are demonstrated by transplantation of encapsulated rat and human islet grafts that functioned properly for about 1 year in diabetic mice.

Keywords

Alginate Human Islet Islet Graft Cell Encapsulation Routine Clinical Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. M. KÜHTREIBER, R. P. LANZA and W. L. CHICK, in “Cell Encapsulation Technology and Therapeutics” (BirkhÄuser, Boston, 1999).Google Scholar
  2. 2.
    R. P. LANZA, R. LANGER and J. VACANTI, in “Principles of Tissue Engineering” (Academic Press, San Diego, 2000).Google Scholar
  3. 3.
    U. ZIMMERMANN, S. MIMIETZ, H. ZIMMERMANN, M. HILLGÄRTNER, H. SCHNEIDER, J. LUDWIG, C. HASSE, A. HAASE, M. ROTHMUND and G. R. FUHR, BioTechniques 29(3) (2000) 564.PubMedGoogle Scholar
  4. 4.
    U. ZIMMERMANN, F. THÜRMER, A. JORK, M. WEBER, S. MIMIETZ, M. HILLGÄRTNER, F. BRUNNENMEIER, H. ZIMMERMANN, I. WESTPHAL, G. R. FUHR, U. NÖTH, A. HAASE, A. STEINERT and C. HENDRICH, Ann. N.Y. Acad. Sci. 944(1) (2001) 199.PubMedGoogle Scholar
  5. 5.
    C. HASSE, G. KLÖCK, A. SCHLOSSER, U. ZIMMERMANN and M. ROTHMUND, Lancet 350(9087) (1997) 1296.CrossRefPubMedGoogle Scholar
  6. 6.
    T. G. WANG, in “Cell Encapsulation Technology and Therapeutics,” edited by W. M. KÜhtreiber, R. P. Lanza and W. L. Chick (BirkhÄuser, Boston, 1999) p. 29.Google Scholar
  7. 7.
    H. ZIMMERMANN, M. HILLGÄRTNER, B. MANZ, P. J. FEILEN, F. BRUNNENMEIER, U. LEINFELDER, M. WEBER, H. CRAMER, S. SCHNEIDER, C. HENDRICH, F. VOLKE and U. ZIMMERMANN, Biomaterials 24(12) (2003) 2083.CrossRefPubMedGoogle Scholar
  8. 8.
    B. H. A. REHM, in “Biopolymers: Polysaccharides I: Polysaccharides from Prokaryotes,” edited by E. J. Vandamme, S. De Baets and A. SteinbÜchel (Wiley-VCH, Weinheim, 2002) Vol. 5, p. 179.Google Scholar
  9. 9.
    K. I. DRAGET, O. SMIDSRØD and G. SKJåK-BRÆK, in “Biopolymers: Polysaccharides II: Polysaccharides from Eukaryotes,” edited by S. De Baets, E. J. Vandamme and A. Steinbüchel (Wiley-VCH, Weinheim, 2002) Vol. 6, p. 215.Google Scholar
  10. 10.
    J. A. VÄSQUEZ, in “Coastal Plant Communities of Latin America,” edited by U. Seeliger (Academic Press, San Diego, 1992) p. 77.Google Scholar
  11. 11.
    M. VENEGAS, B. MATSUHIRO and M. E. EDDING, Botanica Marina 36 (1993) 47.Google Scholar
  12. 12.
    U. LEINFELDER, F. BRUNNENMEIER, H. CRAMER, J. SCHILLER, K. ARNOLD, J. A. VÄSQUEZ and U. ZIMMERMANN, Biomaterials 24(23) (2003) 4161.CrossRefPubMedGoogle Scholar
  13. 13.
    B. MATTIASSON, in “Immobilized Cells and Organelles,” edited by B. Mattiasson (CRC Press, Boca Raton, 1983) Vol. I, p. 3.Google Scholar
  14. 14.
    M. DORNISH, D. KAPLAN and Ø.SKAUGRUD, Ann. N.Y. Acad. Sci. 944(1) (2001) 388.PubMedGoogle Scholar
  15. 15.
    M. A. ATKINSON and E. H. LEITER, Nat. Med. 5(6) (1999) 601.CrossRefPubMedGoogle Scholar
  16. 16.
    J. WIJSMAN, P. ATKISON, R. MAZAHERI, B. GARCIA, T. PAUL, J. VOSE, G. O’SHEA and C. STILLER, Transplantation 54(4) (1992) 588.PubMedGoogle Scholar
  17. 17.
    U. ZIMMERMANN, C. HASSE, M. ROTHMUND and W. KÜHTREIBER, in “Cell Encapsulation Technology and Therapeutics,” edited by W. M. Kühtreiber, R. P. Lanza and W. L. Chick (BirkhÄuser, Boston, 1999) p. 40.Google Scholar
  18. 18.
    C. RYSER, J. WANG, S. MIMIETZ and U. ZIMMERMANN, J. Membr. Biol. 168(2) (1999) 183.CrossRefPubMedGoogle Scholar
  19. 19.
    M. HEIDECKER, S. MIMIETZ, L. H. WEGNER and U. ZIMMERMANN, J. Membr. Biol. 192(2) (2003) 123.CrossRefPubMedGoogle Scholar
  20. 20.
    M. HILLGÄRTNER, H. ZIMMERMANN, S. MIMIETZ, A. JORK, F. THÜRMER, H. SCHNEIDER, U. NÖTH, C. HASSE, A. HAASE, G. R. FUHR, M. ROTHMUND and U. ZIMMERMANN, Math.-Wiss. u. Werkstofftech. 30 (1999) 783.CrossRefGoogle Scholar
  21. 21.
    S. SCHNEIDER, P. J. FEILEN, H. CRAMER, M. HILLGÄRTNER, F. BRUNNENMEIER, H. ZIMMERMANN, M. M. WEBER and U. ZIMMERMANN, J. Microencapsul. 20(5) (2003) 627.CrossRefPubMedGoogle Scholar
  22. 22.
    U. ZIMMERMANN, H. CRAMER, A. JORK, F. THÜRMER, H. ZIMMERMANN, G. R. FUHR, C. HASSE and M. ROTHMUND, in “Biotechnology,” edited by H. J. Rehm and G. Reed (Wiley-VCH, Weinheim, 2001) Vol. 10, p. 547.Google Scholar
  23. 23.
    B. THU, O. GASEROD, D. PAUL, A. MIKKELSEN, G. SKJåK-BRÆK, R. TOFFANIN, F. VITTUR and R. RIZZO, Biopolymers 53(1) (2000) 60.CrossRefPubMedGoogle Scholar
  24. 24.
    B. MANZ, M. HILLGÄRTNER, H. ZIMMERMANN, D. ZIMMERMANN, F. VOLKE and U. ZIMMERMANN, Eur. Biophys. J. 33(1) (2004) 50.CrossRefPubMedGoogle Scholar
  25. 25.
    R. WOLF, J. Microsc. (London) 153 (1989) 181.Google Scholar
  26. 26.
    R. WOLF, in “Science, Technology and Education of Microscopy: an Overview,” edited by A. Mendez-Vilas (Formatex, Madrid, 2003) p. 720.Google Scholar
  27. 27.
    O. SMIDSRØD and G. SKJåK-BRÆK, Trends Biotechnol. 8(3) (1990) 71.CrossRefPubMedGoogle Scholar
  28. 28.
    C. DULIEU, D. PONCELET and R. J. NEUFELD, in “Cell Encapsulation Technology and Therapeutics,” edited by W. M. KÜhtreiber, R. P. Lanza and W. L. Chick (BirkhÄuser, Boston, 1999) p. 3.Google Scholar
  29. 29.
    P. B. MESSERSMITH and S. STARKE, Chem. Mater. 10(1) (1998) 117.CrossRefGoogle Scholar
  30. 30.
    M. E. WESTWOOD and P. J. THORNALLEY, in “The Glycation Hypothesis of Atherosclerosis,” edited by C. Colaco (Landes Bioscience, Georgetown, 1997) p. 57.Google Scholar
  31. 31.
    U. ZIMMERMANN and E. STEUDLE, Adv. Bot. Res. 6 (1978) 45.Google Scholar
  32. 32.
    J. DAINTY, Adv. Bot. Res. 1 (1963) 279.Google Scholar
  33. 33.
    E. O. STEJKAL and J. E. TANNER, J. Chem. Phys. 42 (1965) 288.CrossRefGoogle Scholar
  34. 34.
    M. MAURO, Science 126 (1957) 252.PubMedGoogle Scholar
  35. 35.
    A. K. SOLOMON, J. Gen. Physiol. 51(5) (1968) 335.Google Scholar
  36. 36.
    E. ROBBINS and A. MAURO, ibid. 43(3) (1960) 523.Google Scholar
  37. 37.
    F. J. MARTIN and C. GROVE, Biomed. Microdiv. 3(2) (2001) 97.CrossRefGoogle Scholar
  38. 38.
    S. SCHNEIDER, P. J. FEILEN, F. BRUNNENMEIER, U. ZIMMERMANN and M. M. WEBER, Diabetes 53(2) (2004) A 615.Google Scholar
  39. 39.
    J. H. CROWE and L. M. CROWE, Nat. Biotechnol. 18(2) (2000) 145.CrossRefPubMedGoogle Scholar
  40. 40.
    A. EROGLU, M. J. RUSSO, R. BIEGANSKI, A. FOWLER, S. CHELEY, H. BAYLEY and M. TONER, Nat. Biotechnol. 18(2) (2000) 163.CrossRefPubMedGoogle Scholar
  41. 41.
    H. ZIMMERMANN, A. D. KATSEN, F. R. IHMIG, CH. H. P. DURST, ST. G. SHIRLEY and G. R. FUHR, IEE Proc. Nanobiotechnol. 151(4) (2004) 134.CrossRefGoogle Scholar
  42. 42.
    R. REUSS, J. LUDWIG, R. SHIRAKASHI, F. EHRHART, H. ZIMMERMANN, S. SCHNEIDER, M. M. WEBER, U. ZIMMERMANN, H. SCHNEIDER and V. L. SUKHORUKOV, J. Membr. Biol. 200(2) (2004) 67.CrossRefPubMedGoogle Scholar
  43. 43.
    F. LANG, G. L. BUSCH and H. VÖLKL, Cell. Physiol. Biochem. 8(1/2) (1998) 1.CrossRefPubMedGoogle Scholar
  44. 44.
    M. ESCH, V. L. SUKHORUKOV, M. KÜRSCHNER and U. ZIMMERMANN, Biopolymers 50(3) (1999) 227.CrossRefPubMedGoogle Scholar
  45. 45.
    H. SCHNEIDER, N. WISTUBA, H. J. WAGNER, F. THÜRMER and U. ZIMMERMANN, New Phytol. 148(2) (2000) 221.CrossRefPubMedGoogle Scholar
  46. 46.
    H. SCHNEIDER, B. MANZ, M. WESTHOFF, S. MIMIETZ, M. SZIMTENINGS, T. NEUBERGER, C. FABER, G. KROHNE, A. HAASE, F. VOLKE and U. ZIMMERMANN, New Phytol. 159(2) (2003) 487.CrossRefGoogle Scholar
  47. 47.
    H. J. WAGNER, H. SCHNEIDER, S. MIMIETZ, N. WISTUBA, M. ROKITTA, G. KROHNE, A. HAASE and U. ZIMMERMANN, New Phytol. 148(2) (2000) 239.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • H. Zimmermann
    • 1
  • D. Zimmermann
    • 2
  • R. Reuss
    • 3
  • P. J. Feilen
    • 4
  • B. Manz
    • 5
  • A. Katsen
    • 1
  • M. Weber
    • 3
  • F. R. Ihmig
    • 1
  • F. Ehrhart
    • 1
  • P. Geßner
    • 3
  • M. Behringer
    • 3
  • A. Steinbach
    • 3
  • L. H. Wegner
    • 3
  • V. L. Sukhorukov
    • 3
  • J. A. Vásquez
    • 6
  • S. Schneider
    • 7
  • M. M. Weber
    • 4
  • F. Volke
    • 5
  • R. Wolf
    • 8
  • U. Zimmermann
    • 3
  1. 1.Abteilung Kryobiophysik & KryotechnologieFraunhofer-Institut für Biomedizinische TechnikSt. IngbertGermany
  2. 2.Abteilung für Biophysikalische ChemieMax-Planck-Institut für BiophysikFrankfurtGermany
  3. 3.Lehrstuhl für BiotechnologieBiozentrum, Universität WürzburgWürzburgGermany
  4. 4.Schwerpunkt Endokrinologie und Stoffwechselerkrankungen, Medizinische Klinik und PoliklinikUniversitätsklinik MainzMainzGermany
  5. 5.Arbeitsgruppe Magnetische ResonanzFraunhofer-Institut für Biomedizinische TechnikSt. IngbertGermany
  6. 6.Depto. Biologia Marina, Facultad de Ciencias del MarUniversidad Catolica del NorteCoquimboChile
  7. 7.Allgemeine Innere Medizin, Endokrinologie und Diabetologie, Berufsgenossenschaftliche Kliniken BergmannsheilUniversitätsklinik BochumBochumGermany
  8. 8.Lehrstuhl für Zoologie I, Elektronenmikroskopie, BiozentrumUniversität WürzburgWürzburgGermany

Personalised recommendations