Skip to main content
Log in

Functions of oxygen atoms in hydrogenated amorphous silicon oxide layers for rear-emitter silicon heterojunction solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reducing the parasitic absorption of intrinsic hydrogenated amorphous silicon [a-Si:H(i)] films is crucial for enhancing the short-circuit current density (Jsc) of silicon heterojunction (SHJ) solar cells. Herein, a-Si:H(i) films were replaced by intrinsic hydrogenated amorphous silicon oxide [a-SiOx:H(i)] films with wider band gap at the front of rear-emitter SHJ solar cells and the microstructure of a-SiOx:H(i) films was modified with the flow ratio of carbon dioxide to silane. A-SiOx:H(i) films showed lower absorption coefficients at short wavelengths and led to a 0.13 mA/cm2 absolute increase of Jsc. Additionally, higher open-circuit voltages (Voc) were achieved thanks to the better interface passivation and the fill factors (FF) almost kept constant due to avoiding the impediment of hole transport. However, the higher oxygen content in a-SiOx:H(i) films associated with the worse electrical performance hence carbon dioxide-to-silane flow ratio should be adjusted at a low value. Finally, a conversion efficiency (Eff) gain of 0.12%abs was obtained for the optimized SHJ solar cells as a result of the improvements of both Voc and Jsc. More importantly, a-SiOx:H(i) layer exhibited better damp-heat stability than a-Si:H(i) layer in sodium environment. This work clearly interpreted the functions of oxygen atoms in a-SiOx:H(i) films and offered a valid approach to reducing the parasitic absorption losses of SHJ solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. S. De Wolf, A. Descoeudres, Z.C. Holman, C. Ballif, Green 2, 7–24 (2012). https://doi.org/10.1515/green-2011-0018

    Article  CAS  Google Scholar 

  2. J.-W.A. Schüttauf, K.H.M. van der Werf, I.M. Kielen, W.G.J.H.M. van Sark, J.K. Rath, R.E.I. Schropp, Appl. Phys. Lett. 99, 203503 (2011). https://doi.org/10.1063/1.3662404

    Article  CAS  Google Scholar 

  3. J. Haschke, O. Dupré, M. Boccard, C. Ballif, Sol. Energy Mater. Sol. Cells 187, 140–153 (2018). https://doi.org/10.1016/j.solmat.2018.07.018

    Article  CAS  Google Scholar 

  4. N. Jensen, R.M. Hausner, R.B. Bergmann, J.H. Werner, U. Rau, Prog. Photovolt.: Res. Appl. 10, 1–13 (2002). https://doi.org/10.1002/pip.398

    Article  CAS  Google Scholar 

  5. J. Dréon, Q. Jeangros, J. Cattin, J. Haschke, L. Antognini, C. Ballif, M. Boccard, Nano Energy 70, 104495 (2020). https://doi.org/10.1016/j.nanoen.2020.104495

    Article  CAS  Google Scholar 

  6. Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S. De Wolf, C. Ballif, IEEE J. Photovolt. 2, 7–15 (2012). https://doi.org/10.1109/jphotov.2011.2174967

    Article  Google Scholar 

  7. F. Einsele, W. Beyer, U. Rau, J. Appl. Phys. 112, 054905 (2012). https://doi.org/10.1063/1.4749415

    Article  CAS  Google Scholar 

  8. H. Fujiwara, T. Kaneko, M. Kondo, Appl. Phys. Lett. 91, 133508 (2007). https://doi.org/10.1063/1.2790815

    Article  CAS  Google Scholar 

  9. T. Mueller, S. Schwertheim, M. Scherff, W.R. Fahrner, Appl. Phys. Lett. 92, 033504 (2008). https://doi.org/10.1063/1.2837192

    Article  CAS  Google Scholar 

  10. J. Peter Seif, A. Descoeudres, M. Filipič, F. Smole, M. Topič, Z. Charles Holman, S. De Wolf, C. Ballif, J. Appl. Phys. 115, 024502 (2014). https://doi.org/10.1063/1.4861404

    Article  CAS  Google Scholar 

  11. K. Ding, U. Aeberhard, F. Finger, U. Rau, J. Appl. Phys. 113, 134501 (2013). https://doi.org/10.1063/1.4798603

    Article  CAS  Google Scholar 

  12. M. Mews, M. Liebhaber, B. Rech, L. Korte, Appl. Phys. Lett. 107, 013902 (2015). https://doi.org/10.1063/1.4926402

    Article  CAS  Google Scholar 

  13. G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 69, 371–373 (1996). https://doi.org/10.1063/1.118064

    Article  CAS  Google Scholar 

  14. A.H.M. Smets, W.M.M. Kessels, M.C.M. van de Sanden, Appl. Phys. Lett. 82, 1547–1549 (2003). https://doi.org/10.1063/1.1559657

    Article  CAS  Google Scholar 

  15. B. Zhang, Y. Zhang, R. Cong, Y. Li, W. Yu, G. Fu, Sol. Energy 155, 670–678 (2017). https://doi.org/10.1016/j.solener.2017.06.066

    Article  CAS  Google Scholar 

  16. G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, W. Czubatyj, Phys. Rev. B 28, 3225–3233 (1983). https://doi.org/10.1103/PhysRevB.28.3225

    Article  CAS  Google Scholar 

  17. D.V. Tsu, G. Lucovsky, B.N. Davidson, Phys. Rev. B 40, 1795–1805 (1989). https://doi.org/10.1103/physrevb.40.1795

    Article  CAS  Google Scholar 

  18. M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556–3571 (1977). https://doi.org/10.1103/PhysRevB.16.3556

    Article  CAS  Google Scholar 

  19. G. Lucovsky, R.J. Nemanich, J.C. Knights, Phys. Rev. B 19, 2064–2073 (1979). https://doi.org/10.1103/PhysRevB.19.2064

    Article  CAS  Google Scholar 

  20. D. Deligiannis, J. van Vliet, R. Vasudevan, R.A.C.M.M. van Swaaij, M. Zeman, J. Appl. Phys. 121, 085306 (2017). https://doi.org/10.1063/1.4977242

    Article  CAS  Google Scholar 

  21. A.H.M. Smets, M.C.M. van de Sanden, Phys. Rev. B 76, 073202 (2007). https://doi.org/10.1103/PhysRevB.76.073202

    Article  CAS  Google Scholar 

  22. R. Chen, L. Zhang, W. Liu, Z. Wu, F. Meng, Z. Liu, J. Appl. Phys. 122, 125110 (2017). https://doi.org/10.1063/1.5005511

    Article  CAS  Google Scholar 

  23. E. Bhattacharya, A.H. Mahan, Appl. Phys. Lett. 52, 1587–1589 (1987). https://doi.org/10.1063/1.99089

    Article  Google Scholar 

  24. A. Matsuda, K. Nomoto, Y. Takeuchi, A. Suzuki, A. Yuuki, J. Perrin, Surf. Sci. 227, 50–56 (1990). https://doi.org/10.1016/0039-6028(90)90390-T

    Article  CAS  Google Scholar 

  25. G. Lucovsky, Solid State Commun. 29, 571–576 (1979). https://doi.org/10.1016/0038-1098(79)90666-5

    Article  CAS  Google Scholar 

  26. P. John, I.M. Odeh, M.J.K. Thomas, M.J. Tricker, J.I.B. Wilson, Phys. Status Solidi B 105, 499–505 (1981). https://doi.org/10.1002/pssb.2221050208

    Article  CAS  Google Scholar 

  27. M. Liebhaber, M. Mews, T.F. Schulze, L. Korte, B. Rech, K. Lips, Appl. Phys. Lett. 106, 031601 (2015). https://doi.org/10.1063/1.4906195

    Article  CAS  Google Scholar 

  28. T.F. Schulze, L. Korte, F. Ruske, B. Rech, Phys. Rev. B 83, 165314 (2011). https://doi.org/10.1103/PhysRevB.83.165314

    Article  CAS  Google Scholar 

  29. C. Battaglia, S.M. de Nicolás, S. De Wolf, X. Yin, M. Zheng, C. Ballif, A. Javey, Appl. Phys. Lett. 104, 113902 (2014). https://doi.org/10.1063/1.4868880

    Article  CAS  Google Scholar 

  30. Z. Shu, U. Das, J. Allen, R. Birkmire, S. Hegedus, Prog. Photovolt.: Res. Appl. 23, 78–93 (2015). https://doi.org/10.1002/pip.2400

    Article  CAS  Google Scholar 

  31. J. Oh, H.C. Yuan, H.M. Branz, Nat. Nanotechnol. 7, 743–748 (2012). https://doi.org/10.1038/nnano.2012.166

    Article  CAS  Google Scholar 

  32. H. Fujiwara, M. Kondo, Appl. Phys. Lett. 90, 013503 (2007). https://doi.org/10.1063/1.2426900

    Article  CAS  Google Scholar 

  33. S. De Wolf, M. Kondo, Appl. Phys. Lett. 90, 042111 (2007). https://doi.org/10.1063/1.2432297

    Article  CAS  Google Scholar 

  34. M. Leilaeioun, W. Weigand, M. Boccard, Z.J. Yu, K. Fisher, Z.C. Holman, IEEE J. Photovolt. 10, 54–62 (2020). https://doi.org/10.1109/jphotov.2019.2949430

    Article  Google Scholar 

Download references

Funding

This work was supported by two National Natural Science Foundations of China (Nos. 62004208 and 62074153), and Science and Technology Commission of Shanghai (19dz1207602 and 20dz1207100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhu Liu or Zhengxin Liu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Liu, W., Yang, Y. et al. Functions of oxygen atoms in hydrogenated amorphous silicon oxide layers for rear-emitter silicon heterojunction solar cells. J Mater Sci: Mater Electron 33, 416–426 (2022). https://doi.org/10.1007/s10854-021-07315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07315-1

Navigation