Skip to main content
Log in

The effect of different frequencies and illuminations on the electrical behavior of MoO3/Si heterojunctions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the rectifier properties of the transition metal oxide group n-type semiconductor molybdenum trioxide (MoO3) were investigated. The MoO3 material is a suitable material for the heterojunction structures with AFM, SEM, XRD, and 3D optical profilometer such as structural and morphological characterization result showed. Current–voltage (I-V), capacitance–voltage (C-V), and conductance-voltage (G-V) measurements of Cr/MoO3/n-Si and Cr/MoO3/p-Si heterojunction devices were made in dark and different illuminations at 300 K. The basic diode parameters were determined by using Thermionic emission (TE), and Cheung and Norde method from the I-V characteristics of the devices in dark conditions. The ideality factors of Cr/MoO3/n-Si and Cr/MoO3/p-Si devices were calculated as 1.25 and 1.22, respectively, and barrier heights of 0.69 and 0.71 eV of the devices were calculated by TE method. These results showed that the MoO3/Si heterojunction has rectifier properties. The high values of ideality can be attributed to the inhomogeneities at the interface and the series resistance. In addition, the photoconductivity properties were examined of the devices at 50 and 100 mW/cm2 illuminations. From the experimental results obtained, it was concluded that the devices can be used as photodiodes as well as showing good rectifier properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Bartolomeo et al., Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Materials 4(2), 25075 (2017)

    Article  CAS  Google Scholar 

  2. L.B. Taşyürek, M. Sevim, Z. Çaldıran, S. Aydogan, Ö. Metin, The synthesis of SrTiO3 nanocubes and the analysis of nearly ideal diode application of Ni/SrTiO3 nanocubes/n-Si heterojunctions. Mater. Res. Express 5(1), 15060 (2018)

    Article  CAS  Google Scholar 

  3. L. Zhu, G. Shao, J.K. Luo, Numerical study of metal oxide Schottky type solar cells. Solid State Sci. 14(7), 857–863 (2012)

    Article  CAS  Google Scholar 

  4. Z. Hua, Y. Li, Y. Zeng, Y. Wu, A theoretical investigation of the power-law response of metal oxide semiconductor gas sensors Ι: Schottky barrier control. Sens. Actuators, B Chem. 255, 1911–1919 (2018)

    Article  CAS  Google Scholar 

  5. S. Abbas, M. Kumar, H.-S. Kim, J. Kim, J.-H. Lee, Silver-nanowire-embedded transparent metal-oxide heterojunction Schottky photodetector. ACS Appl. Mater. Interfaces. 10(17), 14292–14298 (2018)

    Article  CAS  Google Scholar 

  6. V. Kumar, N. Singh, A. Kapoor, O.M. Ntwaeaborwa, H.C. Swart, Fabrication and characterization of n-type aluminum-boron co-doped ZnO on p-type silicon (n-AZB/p-Si) heterojunction diodes. Mater. Res. Bull. 48(11), 4596–4600 (2013)

    Article  CAS  Google Scholar 

  7. Ö. Sevgili, L.B. Tasyürek, S. Bayindir, I. Orak, E. Caliskan, The current transformer mechanism and structural properties of novel Al/BODIPY/pSi and Au/BODIPY/pSi heterojunctions. Mater. Sci. Semicond. Process. 130, 105805 (2021). https://doi.org/10.1016/j.mssp.2021.105805

    Article  CAS  Google Scholar 

  8. M. Balaji, J. Chandrasekaran, M. Raja, R. Marnadu, Impact of Cu concentration on the properties of spray coated Cu-MoO3 thin films: evaluation of n-CuMoO3/p-Si junction diodes by JV, Norde and Cheung’s methods. Mater. Res. Express 6(10), 106404 (2019)

    Article  CAS  Google Scholar 

  9. Z. Çaldıran, L.B. Taşyürek, The role of molybdenum trioxide in the change of electrical properties of Cr/MoO3/n-Si heterojunction and electrical characterization of this device depending on temperature. Sens. Actuators, A 328(112765), 2021 (2021)

    Google Scholar 

  10. L. Zhu, W. Zeng, Y. Li, J. Yang, Enhanced ethanol gas-sensing property based on hollow MoO3 microcages. Physica E 106, 170–175 (2019)

    Article  CAS  Google Scholar 

  11. J. Meyer, R. Khalandovsky, P. Görrn, A. Kahn, MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics. Adv. Mater. 23(1), 70–73 (2011)

    Article  CAS  Google Scholar 

  12. Y. Wang et al., Improved performance of CH3NH3PbI3 based photodetector with a MoO3 interface layer. Org. Electron. 49, 355–359 (2017)

    Article  CAS  Google Scholar 

  13. M.T. Greiner, L. Chai, M.G. Helander, W. Tang, Z. Lu, Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3. Adv. Func. Mater. 23(2), 215–226 (2013)

    Article  CAS  Google Scholar 

  14. J. Yu, M. Shafiei, W. Wlodarski, Y.X. Li, K. Kalantar-zadeh, Enhancement of electric field properties of Pt/nanoplatelet MoO3/SiC Schottky diode. J. Phys. D Appl. Phys. 43(2), 25103 (2009)

    Article  CAS  Google Scholar 

  15. M.R. Kiran, H. Ulla, M.N. Satyanarayan, G. Umesh, Investigation of charge transport in Vanadyl-phthalocyanine with molybdenum trioxide as a buffer layer: Impedance spectroscopic analysis. Synth. Met. 210, 208–213 (2015)

    Article  CAS  Google Scholar 

  16. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide. Org. Electron. 10(5), 932–938 (2009)

    Article  CAS  Google Scholar 

  17. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88(7), 73508 (2006)

    Article  CAS  Google Scholar 

  18. T. Matsushima, Y. Kinoshita, H. Murata, Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers. Appl. Phys. Lett. 91(25), 253504 (2007)

    Article  CAS  Google Scholar 

  19. Irfan et al., Energy level evolution of air and oxygen exposed molybdenum trioxide films. Appl. Phys. Lett. 96(24), 116 (2010)

    Article  CAS  Google Scholar 

  20. H. Lee et al., The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis (1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine interfaces. Appl. Phys. Lett. 93(4), 279 (2008)

    Article  Google Scholar 

  21. P. Srinivasan, J.B.B. Rayappan, Growth of α-MoO3 golf ball architectures with interlocking loops for selective probing of trimethylamine at room temperature. Mater. Res. Bulletin 130, 110944 (2020)

    Article  CAS  Google Scholar 

  22. M.B. Rahmani et al., Gas sensing properties of thermally evaporated lamellar MoO3. Sens. Actuators, B Chem. 145(1), 13–19 (2010)

    Article  CAS  Google Scholar 

  23. A. Hojabri, F. Hajakbari, A.E. Meibodi, Structural and optical properties of nanocrystalline α-MoO 3 thin films prepared at different annealing temperatures. J. Theor. Appl. Phys 9(1), 67–73 (2015)

    Article  Google Scholar 

  24. R.T. Tung, Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R. Rep. 35(1–3), 1–138 (2001)

    Article  Google Scholar 

  25. A. Turut, D.E. Yıldız, A. Karabulut, İ Orak, “Electrical characteristics of atomic layer deposited Au/Ti/HfO 2/n-GaAs MIS diodes in the wide temperature range. J Mater Sci: Mater. Electronics 31(10), 7839–7849 (2020)

    CAS  Google Scholar 

  26. S. M. Sze (2008) Semiconductor devices: physics and technology John wiley & sons

  27. S. Huang, Y. Tian, F. Lu, Investigation on the barrier height and phase transformation of nickel silicide Schottky contact. Appl. Surf. Sci. 234(1–4), 362–368 (2004)

    Article  CAS  Google Scholar 

  28. W. Mönch (2013) Semiconductor surfaces and interfaces, vol. 26. Springer Science & Business Media.

  29. V. Janardhanam et al., Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers. J. Alloy. Compd. 504(1), 146–150 (2010)

    Article  CAS  Google Scholar 

  30. A. Hussain, A. Rahman, Synthesis and electrical characteristics of Al/(p) PbS Schottky barrier junction. Mater. Sci. Semicond. Process. 16(6), 1918–1924 (2013)

    Article  CAS  Google Scholar 

  31. K. Ejderha, A. Zengin, I. Orak, B. Tasyurek, T. Kilinc, A. Turut, Dependence of characteristic diode parameters on sample temperature in Ni/epitaxy n-Si contacts. Mater. Sci. Semicond. Process. 14(1), 5–12 (2011)

    Article  CAS  Google Scholar 

  32. Y. Li, W. Long, R.T. Tung, Effect of metal interaction on the Schottky barrier height on adsorbate-terminated silicon surfaces. Appl. Surf. Sci. 284, 720–725 (2013)

    Article  CAS  Google Scholar 

  33. W. Long, Y. Li, R.T. Tung, Schottky barrier height systematics studied by partisan interlayer. Thin Solid Films 557, 254–257 (2014)

    Article  CAS  Google Scholar 

  34. L.B. Taşyürek, Ş Aydoğan, M. Sevim, Z. Çaldıran, Temperature dependent electronic transport properties of heterojunctions formed between perovskite SrTiO 3 nanocubes and silicon. J. Mater. Sci.: Mater. Electron. 31, 1–14 (2020)

    Google Scholar 

  35. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49(2), 85–87 (1986)

    Article  CAS  Google Scholar 

  36. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50(7), 5052–5053 (1979)

    Article  CAS  Google Scholar 

  37. Z. Çaldıran, “Fabrication of Schottky barrier diodes with the lithium fluoride interface layer and electrical characterization in a wide temperature range. J Alloys Comp. 816, 152601 (2020)

    Article  CAS  Google Scholar 

  38. P.A. Shaikh, V.P. Thakare, D.J. Late, S. Ogale, A back-to-back MOS–Schottky (Pt–SiO 2–Si–C–Pt) nano-heterojunction device as an efficient self-powered photodetector: one step fabrication by pulsed laser deposition. Nanoscale 6(7), 3550–3556 (2014)

    Article  CAS  Google Scholar 

  39. R.K. Gupta, K. Ghosh, P.K. Kahol, Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Curr. Appl. Phys. 9(5), 933–936 (2009)

    Article  Google Scholar 

  40. A. Karabulut, İ Orak, A. Türüt, The photovoltaic impact of atomic layer deposited TiO2 interfacial layer on Si-based photodiodes. Solid-State Electron. 144, 39–48 (2018)

    Article  CAS  Google Scholar 

  41. A. Yeşildağ, Ruthenium (III)–pyridine complex: Synthesis, characterization, barrier diode and photodiode applications in Al/Ru-Py/p-Si/Al sandwich device structure. Chem. Pap. 75, 1–10 (2021)

    Article  CAS  Google Scholar 

  42. A.A.M. Farag, H.S. Soliman, A.A. Atta, Analysis of dark and photovoltaic characteristics of Au/Pyronine G (Y)/p-Si/Al heterojunction. Synth. Met. 161(23–24), 2759–2764 (2012)

    Article  CAS  Google Scholar 

  43. A. Kocyigit, M. Yilmaz, S. Aydogan, Ü. İncekara, H. Kacus, Comparison of n and p type Si-based Schottky photodiode with interlayered Congo red dye. Mater. Sci. Semicond. Process. 135, 106045 (2021). https://doi.org/10.1016/j.mssp.2021.106045

    Article  CAS  Google Scholar 

  44. Z. Rebaoui et al., SiC polytypes and doping nature effects on electrical properties of ZnO-SiC Schottky diodes. Microelectron. Eng. 171, 11–19 (2017)

    Article  CAS  Google Scholar 

  45. B. Ray, A.G. Baradwaj, B.W. Boudouris, M.A. Alam, Defect characterization in organic semiconductors by forward bias capacitance–voltage (FB-CV) analysis. The Journal of Physical Chemistry C 118(31), 17461–17466 (2014)

    Article  CAS  Google Scholar 

  46. S.A. Yerişkin, M. Balbaşı, İ Orak, Frequency dependent electrical characteristics and origin of anomalous capacitance–voltage (C–V) peak in Au/(graphene-doped PVA)/n-Si capacitors. J. Mater. Sci.: Mater. Electron. 28(11), 7819–7826 (2017)

    Google Scholar 

  47. Ö. Güllü, S. Aydoğan, A. Türüt, Electronic parameters of high barrier Au/Rhodamine-101/n-Inp Schottky diode with organic ınterlayer. Thin Solid Films 520(6), 1944–1948 (2012)

    Article  CAS  Google Scholar 

  48. İ Orak, Z. Caldiran, M. Bakir, O.S. Cifci, A. Kocyigit, The Aromatic thermosetting copolyester for schottky diode applications in a wide temperature range. J. Electron. Mater. 49(1), 402–409 (2020)

    Article  CAS  Google Scholar 

  49. R.H. Al Orainy, Electrical characterization of a Schottky diode based on organic semiconductor film. J Optoelectron Adv. Mater. 16, 793–797 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Associate Professor Ikram Orak from Bingol University and Professor Bulent Cakmak from Erzurum Technical University for their help.

Author information

Authors and Affiliations

Authors

Contributions

ZC: Investigation, writing—review & editing, Supervision, LBT: Investigation, writing—original draft, writing—review & editing, Supervision, YN: Investigation.

Corresponding author

Correspondence to Lütfi Bilal Taşyürek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çaldıran, Z., Taşyürek, L.B. & Nuhoğlu, Y. The effect of different frequencies and illuminations on the electrical behavior of MoO3/Si heterojunctions. J Mater Sci: Mater Electron 32, 27950–27961 (2021). https://doi.org/10.1007/s10854-021-07176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07176-8

Navigation