Skip to main content

Advertisement

Log in

Biomass-based carbon materials derived from Cyperus malaccensis Lam. var. brevifolius Bocklr with efficient microwave absorption performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Compared with chemically synthesized materials, biomass materials often exhibit unique intrinsic structures, which can be utilized through optimizing microstructures and activation process to furnish low-cost and efficient Microwave Absorption Materials. This research uses a common hydrophyte (Cyperus malaccensis Lam. var. brevifolius Bocklr) in South China as the raw material to fabricate carbon-based biomass-derived absorbers through one-step synthesis. The fabricated carbon materials show efficient Microwave Absorption (MA) performance with minimum reflection loss (RLmin) of − 26.0 dB at 11.9 GHz from the sample pyrolyzed at 700 °C under the thickness of only 2 mm and wide effective absorption bandwidth of 4.6 GHz (11.6–16.2 GHz) from the sample annealed at 600 °C. Moreover, the effective MA bandwidth can cover the entire C to Ku band by tuning the thickness. A balance of dielectric loss mechanism and impedance matching is the reason why this biomass carbon-based absorber exhibits excellent MA performance. The results show that this biomass carbon has great potential to be low-cost, green and efficient carbon-based microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Y. Wang, W.Z. Zhang, X.M. Wu, C.Y. Luo, T. Liang, G. Yan, Metal-organic framework nanoparticles decorated with graphene: a high-performance electromagnetic wave absorber. J. Magn. Magn. Mater. 416, 226 (2016)

    Article  CAS  Google Scholar 

  2. T.F. Lin, H.J. Yu, L. Wang, Q.H. Ma, H.Y. Huang, L. Wang, M.A. Uddin, F. Haq, D.A. Lemenovskiy, A study on the fabrication and microwave shielding properties of PANI/C60 heterostructures. Polym. Compos. 42, 1961 (2021)

    Article  CAS  Google Scholar 

  3. F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, Z.Y. Wang, D. Hui, Z.W. Zhou, Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B-Eng. 137, 260 (2018)

    Article  CAS  Google Scholar 

  4. Y.N. Gao, Y. Wang, T.N. Yue, Y.X. Weng, M. Wang, Multifunctional cotton non-woven fabrics coated with silver nanoparticles and polymers for antibacterial, superhydrophobic and high performance microwave shielding. J. Colloid Interfaces Sci. 582, 112 (2021)

    Article  CAS  Google Scholar 

  5. Z.Q. Yang, Y.L. Xia, Z.M. Zhou, C.C. Chen, J.Y. Xu, J.J. Shi, C. Xu, F. Wu, A. Xie, Dielectric properties and microwaves response behavior of polypyrrole-derived N-doped carbon nanotubes. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-04799-1

    Article  Google Scholar 

  6. I.R. Ibrahim, K.A. Matori, I. Ismail, Z. Awang, S.N.A. Rusly, R. Nazlan, F.M. Idris, M.M.M. Zulkimi, N.H. Abdullah, M.S. Mustaffa, F.N. Shafiee, M. Ertugrul, A study on microwave absorption properties of carbon black and Ni0.6Zn0.4Fe2O4 nanocomposites by tuning the matching-absorbing layer structures. Sci. Rep. 10, 3135 (2020)

    Article  CAS  Google Scholar 

  7. Z.N. Yang, F. Luo, L. Gao, Y.C. Qing, W.C. Zhou, D.M. Zhu, Enhanced microwave absorption properties of carbon black/silicone rubber coating by frequency-selective surface. J. Electron. Mater. 45, 5017 (2016)

    Article  CAS  Google Scholar 

  8. S. Goel, A. Garg, H.B. Baskey, S. Tyagi, Microwave absorption study of low-density composites of barium hexaferrite and carbon black in X-band. J. Sol-Gel Sci. Technol. 98, 351 (2021)

    Article  CAS  Google Scholar 

  9. S.K. Singh, M.J. Akhtar, K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. Interfaces 10(29), 24816 (2018)

    Article  CAS  Google Scholar 

  10. H. Raghubanshi, E.D. Dikio, E.B. Naidoo, The properties and applications of helical carbon fibers and related materials: a review. J. Ind. Eng. Chem. 44, 23 (2016)

    Article  CAS  Google Scholar 

  11. S. Xie, Z.J. Ji, B. Li, L.C. Zhu, J. Wang, Electromagnetic wave absorption properties of helical carbon fibers and expanded glass beads filled cement-based composites. Compos. Part A-Appl. S. 114, 360 (2018)

    Article  CAS  Google Scholar 

  12. F. Ghanbari, S.M. Dehaghi, H. Mahdavi, Epoxy-based multilayered coating containing carbon nanotube (CNT), silicon carbide (SiC), and carbonyl iron (CI) particles: as efficient microwave absorbing materials. J. Coat. Technol. Res. 17, 815 (2020)

    Article  CAS  Google Scholar 

  13. Y. Qiu, H.B. Yang, L. Ma, Y. Lin, H.W. Zong, B. Wen, X.Y. Bai, M.Q. Wang, In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption. J. Colloid Interfaces Sci. 581, 783 (2021)

    Article  CAS  Google Scholar 

  14. M. Fakharpour, R. Karimi, Electromagnetic wave absorption properties of MWCNTs-COOH/cement composites with different shapes of chiral, armchair and zigzag. Fuller. Nanotube Carbon Nanostruct. 29(5), 386 (2021)

    Article  CAS  Google Scholar 

  15. F.H. Cao, F. Yan, J. Xu, C.L. Zhu, L.H. Qi, C.Y. Li, Y.J. Chen, Tailing size and impedance matching characteristic of nitrogen-doped carbon nanotubes for electromagnetic wave absorption. Carbon 174, 79 (2021)

    Article  CAS  Google Scholar 

  16. F. Ye, Q. Song, Z.C. Zhang, W. Li, S.Y. Zhang, X.Y. Yin, Y.Z. Zhou, H.W. Tao, Y.S. Liu, L.F. Cheng, L.T. Zhang, H.J. Li, Direct growth of edge-rich graphene with tunable dielectric properties in porous si3n4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018)

    Article  CAS  Google Scholar 

  17. H.X. Zhang, C. Shi, Z.R. Jia, X.H. Liu, B.H. Xu, D.D. Zhang, G.L. Wu, FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption. J. Colloid Interfaces Sci. 584, 382 (2021)

    Article  CAS  Google Scholar 

  18. B. Zhao, Y. Li, H.Y. Ji, P.W. Bai, S. Wang, B.B. Fan, X.Q. Guo, R. Zhang, Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 176, 411 (2021)

    Article  CAS  Google Scholar 

  19. Y. Wang, X. Gao, Y.Q. Fu, X.M. Wu, Q.G. Wang, W.Z. Zhang, C.Y. Luo, Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. Part B-Eng. 169, 221 (2019)

    Article  CAS  Google Scholar 

  20. P.B. Liu, C.Y. Zhu, S. Gao, C. Guan, Y. Huang, W.J. He, N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 163, 348 (2020)

    Article  CAS  Google Scholar 

  21. Y. Arooj, Y. Zhao, X. Han, T.J. Bao, Y. Wang, Combined effect of graphene oxide and MWCNTs on microwave absorbing performance of epoxy composites. Polym. Adv. Technol. 26, 620 (2015)

    Article  CAS  Google Scholar 

  22. W.H. Gu, X.Q. Cui, J. Zheng, J.W. Yu, Y. Zhao, G.B. Ji, Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 67, 265 (2020)

    Article  Google Scholar 

  23. H.Q. Zhao, Y. Cheng, Z. Zhang, B.S. Zhang, C.C. Pei, F.Y. Fan, G.B. Ji, Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 173, 501 (2021)

    Article  CAS  Google Scholar 

  24. W.H. Gu, J.Q. Sheng, Q.Q. Huang, G.H. Wang, J.B. Chen, G.B. Ji, Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13, 102 (2021)

    Article  CAS  Google Scholar 

  25. H.T. Guan, Q.Y. Wang, X.F. Wu, J. Pang, Z.Y. Jiang, G. Chen, C.J. Dong, L.H. Wang, C.H. Gong, Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B-Eng. 207, 108562 (2021)

    Article  CAS  Google Scholar 

  26. H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang, L.Y.P. Wang, G.B. Ji, Z.C.J. Xu, Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019)

    Article  CAS  Google Scholar 

  27. Y. Wang, X. Gao, H.W. Zhou, X.M. Wu, W.Z. Zhang, Q.G. Wang, C.Y. Luo, Fabrication of biomassderived carbon decorated with NiFe2O4 particles for broadband and strong microwave absorption. Powder Technol. 345, 370 (2019)

    Article  CAS  Google Scholar 

  28. X.X. Sun, M.L. Yang, S. Yang, S.S. Wang, W.L. Yin, R.C. Che, Y.B. Li, Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15, 1902974 (2019)

    Article  CAS  Google Scholar 

  29. S.S. Gao, Q.D. An, Z.Y. Xiao, S.R. Zhai, Z. Shi, Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 8, 19011 (2018)

    Article  CAS  Google Scholar 

  30. Y.Q. Guo, W. Liu, R.T. Wu, L.J. Sun, Y. Zhang, Y.P. Cui, S. Liu, H.L. Wang, B.H. Shan, Marine-biomass-derived porous carbon sheets with a tunable n-doping content for superior sodiumion storage. ACS Appl. Mater. Interfaces 10(44), 38376 (2018)

    Article  CAS  Google Scholar 

  31. Z.C. Wu, K. Tian, T. Huang, W. Hu, F.F. Xie, J.J. Wang, M.X. Su, L. Li, Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10(13), 11108 (2018)

    Article  CAS  Google Scholar 

  32. T.Q. Hou, Z.R. Jia, A.L. Feng, Z.H. Zhou, X.H. Liu, H.L. Lv, G.L. Wu, Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J. Mater. Sci. Technol. 68, 61 (2021)

    Article  Google Scholar 

  33. Y. Cheng, J.Z.Y. Seow, H.Q. Zhao, Z.C.J. Xu, G.B. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020)

    Article  CAS  Google Scholar 

  34. W.Q. Wang, C. Wang, C.S. Zeng, C. Tong, J. Peñuelas, Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil–plant system in the Minjiang River tidal estuarine wetlands of China. Wetl. Ecol. Manag. 23, 865 (2015)

    Article  CAS  Google Scholar 

  35. W.F. Hu, W.L. Zhang, L.H. Zhang, C. Tong, Z.G. Sun, Y. Chen, C.S. Zeng, Nitrogen along the hydrological gradient of marsh sediments in a subtropical estuary: pools, processes, and fluxes. Int. J. Environ. Res. Public Health 16(11), 2043 (2019)

    Article  CAS  Google Scholar 

  36. J.F. Chen, H.L. Xu, Y.B. Sun, L.L. Huang, P.X. Zhang, C.P. Zou, B. Yu, G.F. Zhu, C.Y. Zhao, Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China. Sci. Total. Environ. 543(Pt A), 197 (2016)

    Article  CAS  Google Scholar 

  37. P. Cheng, S.Y. Gao, P.Y. Zang, X.F. Yang, Y.L. Bai, H. Xu, Z.H. Liu, Z.B. Lei, Carbon 93, 315 (2015)

    Article  CAS  Google Scholar 

  38. Z.W. Tian, Y. Qiu, J.C. Zhou, X.B. Zhao, J.J. Cai, The direct carbonization of algae biomass to hierarchical porous carbons and CO2 adsorption properties. Mater. Lett. 180, 162 (2016)

    Article  CAS  Google Scholar 

  39. X. Qiu, L.X. Wang, H.L. Zhu, Y.K. Guan, Q.T. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9, 7408 (2017)

    Article  CAS  Google Scholar 

  40. J. Qiao, X. Zhang, D.M. Xu, L.X. Kong, L.F. Lv, F. Yang, F.L. Wang, W. Liu, J.R. Liu, Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 380, 122591 (2020)

    Article  CAS  Google Scholar 

  41. Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Conductive carbon nanofiber–polymer foam structures. Adv. Mater. 17, 1999 (2005)

    Article  CAS  Google Scholar 

  42. H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, Y.W. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245 (2019)

    Article  CAS  Google Scholar 

  43. R.W. Shu, G.Y. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J.J. Shi, J. He, Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high performance electromagnetic wave absorbers. Chem. Eng. J. 337, 242 (2018)

    Article  CAS  Google Scholar 

  44. B. Mordina, R. Kumar, R.K. Tiwari, D.K. Setua, A. Sharma, Fe3O4 Nanoparticles embedded hollow mesoporous carbon nanofibers and polydimethylsiloxane-based nanocomposites as efficient microwave absorber. J. Phys. Chem. C. 121(14), 7810 (2017)

    Article  CAS  Google Scholar 

  45. X. Li, L.J. Yu, L.M. Yu, Y.B. Dong, Q. Gao, Q.X. Yang, W.T. Yang, Y.F. Zhu, Y.Q. Fu, Chiral polyaniline with superhelical structures for enhancement in microwave absorption. Chem. Eng. J. 352, 745 (2018)

    Article  CAS  Google Scholar 

  46. Y.L. Zhang, X.X. Wang, M.S. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano. Res. 11, 1426 (2018)

    Article  CAS  Google Scholar 

  47. Y. Cheng, H.Q. Zhao, Z.H. Yang, J. Lv, J.M. Cao, X.D. Qi, G.B. Ji, Y.W. Du, An unusual route to grow carbon shell on Fe3O4 microspheres with enhanced microwave absorption. J. Alloys Compd. 762, 463 (2018)

    Article  CAS  Google Scholar 

  48. P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, Z.X. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285 (2019)

    Article  CAS  Google Scholar 

  49. Y.C. Yin, X.F. Liu, X.J. Wei, Y. Li, X.Y. Nie, R.H. Yu, J.L. Shui, Magnetically aligned Co–C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efcient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9(36), 30850 (2017)

    Article  CAS  Google Scholar 

  50. J. Yan, Y. Huang, C. Chen, X.D. Liu, H. Liu, The 3D CoNi alloy particles embedded N-doped porous carbon foam for high-performance microwave absorber. Carbon 152, 545 (2019)

    Article  CAS  Google Scholar 

  51. X.X. Sun, Z. Wang, S.S. Wang, Y.H. Ning, M.L. Yang, S. Yang, L. Zhou, Q. He, Y.B. Li, Ultrabroad-band and low-frequency microwave absorption based on activated waxberry metamaterial. Chem. Eng. J. 422, 130142 (2021)

    Article  CAS  Google Scholar 

  52. G.L. Wu, Y.H. Cheng, Z.H. Yang, Z.R. Jia, H.J. Wu, L.J. Yang, H.L. Li, P.Z. Guo, H.L. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519 (2018)

    Article  CAS  Google Scholar 

  53. Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486 (2016)

    Article  CAS  Google Scholar 

  54. H.L. Lv, X.H. Liang, G.B. Ji, H.Q. Zhang, Y.W. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7(18), 9776 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable. The authors declare that there is no funding.

Author information

Authors and Affiliations

Authors

Contributions

YL, JH and AX designed the research; YL performed the experiment; YL and YD performed the data processing; BL and SC did the photographing of Cyperus malaccensis Lam. var. brevifolius Bocklr and the pyrolyzed samples.

Corresponding author

Correspondence to Jing He.

Ethics declarations

Conflict of interest

Not applicable. The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Deng, Y., Xie, A. et al. Biomass-based carbon materials derived from Cyperus malaccensis Lam. var. brevifolius Bocklr with efficient microwave absorption performance. J Mater Sci: Mater Electron 32, 26202–26212 (2021). https://doi.org/10.1007/s10854-021-07055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07055-2

Navigation