Skip to main content

Advertisement

Log in

Co-modified Ni/N-doped carbon as electrocatalysts for HER and OER

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ni,Co-MOFs have been synthetized by a simple hydrothermal method. Subsequently, Co,Ni/N-doped porous carbon have been prepared by pyrolysis method using the Ni,Co-MOFs as precursor. The results show that the samples present high degree of graphitization. The Co-1–Ni-0.5/NC possesses the largest BET surface area (94.73 m2/g) and pore volume (0.456 cm3/g). The Co-1–Ni-0.5/NC presents the smallest HER overpotential (179 mV) and the best electrocatalytic activity for HER. The Co-0.5–Ni-0.5/NC and Co-1–Ni-0.5/NC have the relatively low overpotential for OER, which are about 348 mV and 383 mV, respectively. The smallest Tafel slope value indicates that Co-1–Ni-0.5/NC presents the best electrocatalytic reactive kinetics. Excellent electrocatalytic performance may be attributed to the more active sites, the higher specific surface area and mesopores as well as the lower charge-transfer resistance. The excellent HER and OER of Co-1–Ni-0.5/NC make its potential to be used on overall water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Hunter, H. Gray, A. Mueller, Chem. Rev. 116, 14120 (2016)

    Article  CAS  Google Scholar 

  2. B. You, Y. Sun, Acc. Chem. Res. 51, 1571–1580 (2018)

    Article  CAS  Google Scholar 

  3. P. Zhang, X.F. Lu, J. Nai, S.-Q. Zang, X.W. Lou, Adv. Sci. 6, 1900576 (2019)

    Article  Google Scholar 

  4. J. Hou, Y. Wu, B. Zhang, S. Cao, Z. Li, L. Sun, Adv. Funct. Mater. 29, 1808367 (2019)

    Article  Google Scholar 

  5. S. Anantharaj, K. Karthick, M. Venkatesh, T.V.S.V. Simha, A.S. Salunke, L. Ma, H. Liang, S. Kundu, Nano Energy 39, 30–43 (2017)

    Article  CAS  Google Scholar 

  6. A.T. Marshall, R.G. Haverkamp, Electrochim. Acta 55, 1978–1984 (2010)

    Article  CAS  Google Scholar 

  7. J.B. Joo, P. Kim, W. Kim, Y. Kim, J. Yi, J. Appl. Electrochem. 39, 135–140 (2009)

    Article  CAS  Google Scholar 

  8. J. Hu, S.L. Zhu, Y.Q. Liang, S.L. Wu, Z.Y. Li, S.Y. Luo, Z.D. Cui, J. Colloid Interface Sci. 587, 79–89 (2021)

    Article  CAS  Google Scholar 

  9. X.J. Feng, Y.L. Shi, J.H. Shi, L.H. Hao, Z.A. Hu, Int. J. Hydrog. Energy 46, 5169–5180 (2021)

    Article  CAS  Google Scholar 

  10. M. Abel, J. Zachenska, E. Dobrocka, M. Zemanova, Trans. Inst. Met. Finish. 99, 23–28 (2021)

    Article  CAS  Google Scholar 

  11. L. Elias, A.C. Hegde, Mater. Today-Proc. 5, 21156–21161 (2018)

    Article  CAS  Google Scholar 

  12. S. Martinez, M. Metikos-Hukovic, L. Valek, J. Mol. Catal.-Chem. 245, 114–121 (2006)

    Article  CAS  Google Scholar 

  13. Y.L. Xu, R. Wang, Y.X. Zheng, L.H. Zhang, T.F. Jiao, Q.M. Peng, Z.F. Liu, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.gee.2020.12.008

    Article  Google Scholar 

  14. Z.Q. Shan, Y.J. Liu, Z. Chen, G. Warrender, J.H. Tian, Int. J. Hydrog. Energy 33, 28–33 (2008)

    Article  CAS  Google Scholar 

  15. N. Farahbakhsh, S. Sanjabi, J. Ind. Eng. Chem. 70, 211–225 (2019)

    Article  CAS  Google Scholar 

  16. T. Wang, Q. Zhou, X. Wang, J. Zheng, X. Li, J. Mater. Chem. A 3, 16435–16439 (2015)

    Article  CAS  Google Scholar 

  17. K. Kim, K.J. Lopez, H.J. Sun, J.C. An, J. Shim, G. Park, Bull. Korean Chem. Soc. 39, 1357–1361 (2018)

    Article  CAS  Google Scholar 

  18. X. Wang, J.Y. Luo, J.W. Tian, D.D. Huang, Y.P. Wu, S. Li, D.S. Li, Inorg. Chem. Commun. 98, 141–144 (2018)

    Article  CAS  Google Scholar 

  19. Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.-C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 140, 2610–2618 (2018)

    Article  CAS  Google Scholar 

  20. Y. Wang, Y. Pan, L. Zhu, H. Yu, B. Duan, R. Wang, Z. Zhang, S. Qiu, Carbon 146, 671–679 (2019)

    Article  CAS  Google Scholar 

  21. R. Liu, H. Zhang, X. Zhang, T. Wu, H. Zhao, G. Wang, RSC Adv. 7, 19181–19188 (2017)

    Article  CAS  Google Scholar 

  22. S.A. Shah, X. Shen, M. Xie, G. Zhu, Z. Ji, H. Zhou, K. Xu, X. Yue, A. Yuan, J. Zhu, Y. Chen, Small 15, 1804545 (2019)

    Article  Google Scholar 

  23. S. Wang, G. Zhou, J. Lv, Y. Ma, L. Yang, J. Phys. Chem. Solids 148, 109696 (2020)

    Article  Google Scholar 

  24. A. Li, K. Shen, J. Chen, Z. Li, Y. Li, Chem. Eng. Sci. 166, 66 (2017)

    Article  CAS  Google Scholar 

  25. Y. Zhao, M. Bi, F. Qian, P. Zeng, M. Chen, Y. Liu, Y. Ding, Z. Fang, ChemElectroChem 5, 3953–3960 (2018)

    Article  CAS  Google Scholar 

  26. A. Morozan, V. Goellner, Y. Nedellec, J. Hannauer, F. Jaouen, J. Electrochem. Soc. 162, 3851 (2015)

    Article  Google Scholar 

  27. Y. Hou, Z. Wen, S. Cui, S. Ci, S. Mao, J. Chen, Adv. Funct. Mater. 25, 872 (2015)

    Article  CAS  Google Scholar 

  28. W. Pei, S. Zhou, Y. Bai, J. Zhao, Carbon 133, 260 (2018)

    Article  CAS  Google Scholar 

  29. X. Zhang, S. Liu, Y. Zang, R. Liu, G. Liu, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Nano Energy 30, 93 (2016)

    Article  CAS  Google Scholar 

  30. Y. Xu, W. Tu, B. Zhang, S. Yin, Y. Huang, M. Kraft, R. Xu, Adv. Mater. 29, 1605957 (2017)

    Article  Google Scholar 

  31. A. Morozan, V. Goellner, Y. Nedellec, J. Hannauer, F. Jaouen, J. Electrochem. Soc. 162, H719–H726 (2015)

    Article  CAS  Google Scholar 

  32. H. Li, X. Qian, C. Xu, S. Huang, C. Zhu, X. Jiang, L. Shao, L. Hou, ACS Appl. Mater. Interfaces 9, 28394–28405 (2017)

    Article  CAS  Google Scholar 

  33. S. Liu, H. Zhang, Q. Zhao, X. Zhang, R. Liu, X. Ge, G. Wang, H. Zhao, W. Cai, Carbon 106, 74–83 (2016)

    Article  CAS  Google Scholar 

  34. Z. Wang, S. Zeng, W. Liu, X. Wang, Q. Li, Z. Zhao, F. Geng, ACS Appl. Mater. Interfaces 9, 1488–1495 (2017)

    Article  CAS  Google Scholar 

  35. M. Wang, C.-L. Dong, Y.-C. Huang, S. Shen, J. Catal. 371, 262–269 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 51701001, 61804039, 51802145), Academic funding projects for Top Talents in Subjects (Majors) of Universities (No. gxbjZD31), Natural Science Foundation of Anhui Higher Education Institution of China (KJ2019A0734, KJ2017A924, KJ2017A002, KJ2019A0735), Natural Science Foundation of Anhui Province (No. 1808085QE126) and Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province(Grant No. 2020GDTCZD01), Provincial quality engineering project of colleges and universities in Anhui Province (2020jxtd210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Tan, W., Wei, Z. et al. Co-modified Ni/N-doped carbon as electrocatalysts for HER and OER. J Mater Sci: Mater Electron 32, 22974–22983 (2021). https://doi.org/10.1007/s10854-021-06782-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06782-w

Navigation