Skip to main content

Advertisement

Log in

Time-intended effect on electrochemical performance of hydrothermally reduced graphene oxide nanosheets: Design and study of solid-state symmetric supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article has been updated

Abstract

Self-organized porous sheet-like assemblies have attracted extensive attention for the development of flexible high-performance electrodes. This work demonstrates the facile synthesis and effects of reduction time on the electrochemical performance of porous sheet-like assemblies of reduced graphene oxide (rGO) on carbon cloth. An rGO porous assembly with a reduction time of 4 h exhibited a superior specific capacitance of 456 F/g at a scan rate of 5 mV/s and 223 F/g at a current density of 1 mA/cm2, with ~ 93.9% initial capacity retention over 2000 cycles. A solid-state symmetric supercapacitor device constructed of a rGO4//rGO4 porous assembly achieved a specific capacitance of 45.86 F/g at a scan rate of 5 mV/s and yielded an energy density of 1.27 Wh/kg and specific power of 833.3 W/kg in a PVA-H2SO4 gel polymer electrolyte. Furthermore, the flexible solid-state symmetric device provides outstanding cyclic stability with a 95.3% retention of its initial capacity over 2000 cycles. Thus, electrodes constructed of rGO porous sheets show great potential for flexible and transparent solid-state symmetric energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 17 May 2021

    This article was updated due to Fig. 5 FE-SEM images of RGO were published wrongly in PDF version

Abbreviations

GO:

Graphene oxide

rGO:

Reduced graphene oxide

CVD:

Chemical vapor deposition

CMG:

Chemical modification of graphene

CC:

Carbon cloth

XRD:

X-ray diffractometry

FE-SEM:

Field-emission scanning electron microscopy

TEM:

Transmission electron microscopy

XPS:

X-ray photoelectron spectroscopy

BET:

Brunauer–Emmett–Teller

V:

Cyclic voltammetry

SCE:

Saturated calomel electrode

GCD:

Galvanostatic charge–discharge

SAED:

Selected area electron diffraction

BJH:

Barret–Joyner–Halenda

EIS:

Electrochemical impedance spectroscopy

FSS:

Flexible solid-state symmetric

References

  1. H. Wu, Y. Zhang, L. Cheng, L. Zheng, Y. Li, W. Yuan, X. Yuan, Graphene based architectures for electrochemical capacitors. Energy Storage Mater. 5, 8–32 (2016)

    Article  Google Scholar 

  2. Y. Dong, Z. Wu, W. Ren, H. Cheng, X. Bao, Graphene: a promising 2D material for electrochemical energy storage. Sci. Bull. 62, 724–740 (2017)

    Article  CAS  Google Scholar 

  3. R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)

    Article  CAS  Google Scholar 

  4. W. Zhang, Y. Zhang, Y. Tian, Z. Yang, Q. Xiao, X. Guo, L. Jing, Y. Zhao, Y. Yan, J. Feng, K. Sun, An insight into the capacitive properties of reduced graphene oxide. ACS Appl. Mater. Int. 6, 2248–2254 (2014)

    Article  CAS  Google Scholar 

  5. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energ. Environ. Sci. 8, 702–730 (2015)

    Article  CAS  Google Scholar 

  6. M. Maksoud, R. Fahim, A. Shalan, M. Elkodous, S. Olojede, A. Osman, C. Farrell, A. Al-Muhtaseb, A. Awed, A. Ashour, D. Rooney, Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ. Chem. Lett. 19, 375–439 (2021)

    Article  Google Scholar 

  7. M. Down, S.J. Rowley-Neale, G. Smith, C.E. Banks, Fabrication of graphene oxide supercapacitor devices. ACS Appl. Energy. Mater. 1, 707–714 (2018)

    Article  CAS  Google Scholar 

  8. D. Parviz, S.A. Shah, M. Odom, W. Sun, J.L. Lutkenhaus, M.J. Green, Tailored network formation in graphene oxide gels. Langmuir 34, 8550–8559 (2018)

    Article  CAS  Google Scholar 

  9. A. Neto, E.E. Fileti, Differential capacitance and energetic of the electrical double layer of graphene oxide supercapacitors impact of the oxidation degree. J. Phys. Chem. C 122, 21824–21832 (2018)

    Article  CAS  Google Scholar 

  10. K. Xu, X. Ji, C. Chen, H. Wan, L. Miao, J. Jiang, Electrochemical double layer near polar reduced graphene oxide electrode: Insights from molecular dynamic study. Electrochem. Acta 166, 142–149 (2015)

    Article  CAS  Google Scholar 

  11. E. Vermisoglou, T. Giannakopoulou, G. Romanos, M. Giannouri, N. Boukos, C. Lei, C. Lekakou, C. Trapalis, Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide. Appl. Surf. Sci. 358, 100–109 (2015)

    Article  CAS  Google Scholar 

  12. B. Rajagopalan, J.S. Chung, Reduced chemically modified graphene oxide for supercapacitor electrode. Nanoscale Res. Lett. 9, 535 (2014)

    Article  Google Scholar 

  13. D. Vikraman, K. Karuppasamy, S. Hussain, A. Kathalingam, A. Sanmugam, J. Jung, H. Kim, One-pot facile methodology to synthesize MoS2-graphene hybrid nanocomposites for supercapacitors with improved electrochemical capacitance. Composites B Eng. 161, 555–563 (2019)

    Article  CAS  Google Scholar 

  14. S. Ramesh, H.M. Yadav, K. Karuppasamy, D. Vikraman, H. Kim, J. Kim, H.S. Kim, Fabrication of manganese oxide@nitrogen doped graphene oxide/polypyrrole (MnO2@NGO/PPy) hybrid composite electrodes for energy storage devices. J. Mater. Res. Technol. 8, 4227–4238 (2019)

    Article  CAS  Google Scholar 

  15. K. Karuppasamy, J. Theerthagiri, D. Vikraman, C. Yim, S. Hussain, R. Sharma, T. Maiyalagan, J. Qin, H. Kim, Ionic liquid-based electrolytes for energy storage devices: a brief review on their limits and applications. Polymers 12, 918 (2020)

    Article  CAS  Google Scholar 

  16. J. Theerthagiri, A. Murthy, S.J. Lee, K. Karuppasamy, S. Arumugam, Y. Yu, M.M. Hanafiah, H. Kim, V. Mittal, M.Y. Choi, Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Cerm. Int. 47, 4404–4425 (2021)

    Article  CAS  Google Scholar 

  17. J.H. Shin, S.H. Kim, S.S. Kwon, W. Park, Direct CVD growth of graphene on three-dimensionally-shaped dielectric substrates. Carbon 129, 785–789 (2018)

    Article  CAS  Google Scholar 

  18. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  19. J. Robinson, X. Weng, K. Trumbull, R. Cavalero, M. Wetherington, E. Frantz, M. LaBella, Z. Hughes, M. Fanton, D. Snyder, Nucleation of epitaxial graphene on SiC (0001). ACS Nano 4, 153–158 (2009)

    Article  Google Scholar 

  20. J. Liu, J. Tang, J.J. Gooding, Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 22, 12435–12452 (2012)

    Article  CAS  Google Scholar 

  21. H.Y. Yue, E.H. Guan, X. Gao, F. Yao, W.Q. Wang, T. Zhang, Z. Wang, S.S. Song, H.J. Zhang, Hydrothermal synthesis of TiO2 nanowires-reduced graphene oxide nanocomposite to enhance electrochemical performance in supercapacitor. Chem. Select 3, 12455–12460 (2018)

    CAS  Google Scholar 

  22. M. Mohandoss, S.S. Gupta, A. Nelleri, T. Pradeep, S.M. Maliyekkal, Solar mediated reduction of graphene oxide. RSC Adv. 7, 957–963 (2017)

    Article  CAS  Google Scholar 

  23. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    Article  CAS  Google Scholar 

  24. F.T. Johra, J. Lee, W. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20, 2883–2887 (2014)

    Article  CAS  Google Scholar 

  25. P.T. Nam, N.V. Khan, N.T. Thom, N.T. Phuong, N.V. Trang, N.T. Xuyen, V.Q. Thai, V.A. Tuan, D.T. Mai Thanh, Synthesis of reduced graphene oxide for high-performance supercapacitor. Vietnam J. Chem. 56, 778–785 (2018)

    Article  Google Scholar 

  26. A.M. Zardkhoshoui, S.S.H. Davarani, Ultrahigh energy density supercapacitors based on facile synthesized Ni, CoOH-rGO/NF hybrid electrodes. J. Alloys Compd. 769, 922–931 (2018)

    Article  CAS  Google Scholar 

  27. D. Zhou, Q. Cheng, B. Han, Solvothermal synthesis of homogeneous graphene dispersion with high concentration. Carbon 49, 3920–3927 (2011)

    Article  CAS  Google Scholar 

  28. P.K. Jha, S.K. Singh, V. Kumar, S. Rana, S. Kurungot, N. Ballav, High-Level supercapacitive performance of chemically reduced graphene oxide. Chemistry 3, 846–860 (2017)

    Article  CAS  Google Scholar 

  29. C. Soares, R. Baptista, D. Cesar, Solvothermal reduction of graphite oxide using alcohols. Mater. Res. 21, 20170726 (2018)

    Google Scholar 

  30. Y. Zhou, Q. Bao, L.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21, 2950–2956 (2009)

    Article  CAS  Google Scholar 

  31. B. Wang, J. Liu, Y. Zhao, Y. Li, W. Xian, M. Amjadipour, J.M. Macleod, N. Motta, The role of graphene oxide liquid crystals in hydrothermal reduction and supercapacitor performance. ACS Appl. Mater. Int. 8, 22316–22323 (2016)

    Article  CAS  Google Scholar 

  32. Z. Niu, J. Chen, H. Hng, J. Ma, X. Chen, A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 24, 4144–4150 (2012)

    Article  CAS  Google Scholar 

  33. X. Mei, X. Meng, F. Wu, Hydrothermal method for the production of reduced graphene oxide. Phys. E. 68, 81–86 (2015)

    Article  CAS  Google Scholar 

  34. Y. Xu, K. Sheng, C. Li, G. Shi, Self-Assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010)

    Article  CAS  Google Scholar 

  35. Z. Sui, Y. Meng, P. Xiao, Z. Zhao, Z. Wei, B. Han, Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl. Mater. Int. 7, 1431–1438 (2015)

    Article  CAS  Google Scholar 

  36. H. An, Y. Li, P. Long, Y. Gao, C. Qin, C. Cao, Y. Feng, W. Feng, Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sources 312, 146–155 (2016)

    Article  CAS  Google Scholar 

  37. Y. Bai, R.B. Rakhi, W. Chen, H.N. Alshareef, Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance. J. Power Sources 233, 313–319 (2013)

    Article  CAS  Google Scholar 

  38. Y. Niu, Q. Fang, X. Zhang, P. Zhang, Y. Li, Reduction and structural evolution of graphene oxide sheets under hydrothermal treatment. Phys. Lett. A. 380, 3128–3132 (2016)

    Article  CAS  Google Scholar 

  39. S.L. Kadam, S.B. Kulkarni, Influence of deposition temperature on physical and electrochemical properties of reduced graphene oxide electrode material for supercapacitor application. Ceram. Int. 44, 14547–14555 (2018)

    Article  CAS  Google Scholar 

  40. F.W. Low, C.W. Lain, S.B. AbdHamid, Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram. Int. 41, 5798–5806 (2015)

    Article  CAS  Google Scholar 

  41. M. Wojtoniszaka, X. Chena, R.J. Kalenczuka, A. Wajdab, J. Łapczukb, M. Kurzewskib, M. Drozdzikb, P.K. Chuc, E. Borowiak-Palen, Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surface B 89, 79–85 (2012)

    Article  Google Scholar 

  42. O. Akhavan, Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81, 158–166 (2015)

    Article  CAS  Google Scholar 

  43. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115, 17009–17019 (2011)

    Article  CAS  Google Scholar 

  44. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  45. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 73 (2010)

    Article  Google Scholar 

  46. N. Dıez, A. Sliwak, S. Gryglewicz, B. Grzyb, G. Gryglewicz, Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment. RSC. Adv. 5, 81831–81837 (2015)

    Article  Google Scholar 

  47. Y.E. Shin, Y.J. Sa, S.Y. Park, J. Lee, K.H. Shin, S.H. Joo, H. Ko, An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks. Nanoscale 6, 9734–9741 (2014)

    Article  CAS  Google Scholar 

  48. Z. Jovanovic, D. Bajuk-Bogdanovic, S. Jovanovic, Z. Mravik, J. Kovac, I. Holclajtner-Antunović, M. Vujkovic, The role of surface chemistry in the charge storage properties of graphene oxide. Electrochem. Acta 258, 1228–1243 (2017)

    Article  CAS  Google Scholar 

  49. R. Kumar, R.M. Kumar, P. Bera, S. Arihar, D. Lahiri, I. Lahiri, Temperature-time dependent transmittance, sheet resistance and bonding energy of reduced graphene oxide on soda lime glass. Appl. Surf. Sci. 425, 558–563 (2017)

    Article  CAS  Google Scholar 

  50. T. Purkait, G. Singh, D. Kumar, M. Singh, R.S. Dey, High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci. Rep. 8, 640–652 (2018)

    Article  Google Scholar 

  51. D.P. Dubal, J.S. Guevara, D. Tonti, E. Encisoc, P. Gomez-Romero, A high voltage solid state symmetric supercapacitor based on graphene–polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel electrolyte. J. Mater. Chem. A 3, 23483–23492 (2015)

    Article  CAS  Google Scholar 

  52. S. Wang, B. Pei, X. Zhao, R.A.W. Dryfe, Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2, 530–536 (2013)

    Article  CAS  Google Scholar 

  53. M. Yu, B. Xie, Y. Yang, Y. Zhang, Y. Chen, W. Yu, S. Zhang, L. Lu, D. Liu, Residual oxygen groups in nitrogen-doped graphene to enhance the capacitive performance. RSC Adv. 7, 15293–15301 (2017)

    Article  CAS  Google Scholar 

  54. L. Chang, W. Wei, K. Sun, Y.H. Hu, 3D flower-structured graphene from CO2 for supercapacitors with ultrahigh areal capacitance at high current density. J. Mater. Chem. A. 3, 10183–10187 (2015)

    Article  CAS  Google Scholar 

  55. G.S. Gund, D.P. Dubal, S.S. Shinde, C.D. Lokhande, Architectured morphologies of chemically prepared NiO/MWCNTs nanohybrid thin films for high performance supercapacitors. ACS Appl. Mater. Interfaces 6, 3176–3188 (2014)

    Article  CAS  Google Scholar 

  56. B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 4484–4490 (2012)

    Article  CAS  Google Scholar 

  57. Z. Lin, Y. Liu, Y. Yao, O.J. Hildreth, Z. Li, K. Moon, C. Wong, Superior capacitance of functionalized graphene. J. Phys. Chem. C 115, 7120–7125 (2011)

    Article  CAS  Google Scholar 

  58. G. Luo, H. Huang, C. Lei, Z. Cheng, X. Wu, S. Tang, Y. Du, Facile synthesis of porous graphene as binder-free electrode for supercapacitor application. Appl. Surf. Sci. 366, 46–52 (2016)

    Article  CAS  Google Scholar 

  59. A. Raja, P. Rajasekaran, K. Selvakumar, M. Arivanandh, S.A. Bahadur, M. Swaminathan, Green approach to the preparation of reduced graphene oxide for photocatalytic and supercapacitor application. Optik 190, 21–27 (2019)

    Article  Google Scholar 

  60. H. Liu, W. Zhu, D. Long, J. Zhu, G. Pezzotti, Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors. Appl. Surf. Sci. 478, 383–392 (2019)

    Article  CAS  Google Scholar 

  61. A.A. Yadav, Y.M. Hunge, S.B. Kulkarni, Chemical synthesis of Co3O4 nanowires for symmetric supercapacitor device. J. Mater. Sci. Mater. Electron. 29, 16401–16409 (2018)

    Article  CAS  Google Scholar 

  62. A.V. Shinde, N.R. Chodankar, V.C. Lokhande, A.C. Lokhande, T. Ji, J.H. Kim, C.D. Lokhande, Highly energetic flexible all-solid-state asymmetric supercapacitor with Fe2O3 and CuO thin films. RSC Adv. 6, 58839–58843 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2020R1A2C1015206, NRF-2019M3F5A1A01077146, and NRF-2017M1A2A2048904). S.L.K. Would like thank to the Council of Scientific and Industrial Research, India for providing senior research fellowship CSIR-SRF Award No.: 09/877(100)2K18.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Cheol Shin or Shrinivas B. Kulkarni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11874 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, S.L., Mane, S.M., Ingole, R.S. et al. Time-intended effect on electrochemical performance of hydrothermally reduced graphene oxide nanosheets: Design and study of solid-state symmetric supercapacitor. J Mater Sci: Mater Electron 32, 14901–14918 (2021). https://doi.org/10.1007/s10854-021-06042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06042-x

Navigation