Skip to main content
Log in

Terahertz emission increase in GaAs films exhibiting structural defects grown on Si (100) substrates using a two-layered LTG-GaAs buffer system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Terahertz (THz) emission increase is observed for GaAs thin films that exhibit structural defects. The GaAs epilayers are grown by molecular beam epitaxy on exactly oriented Si (100) substrates at three different temperatures (Ts = 320 °C, 520 °C and 630 °C). The growth method involves the deposition of two low-temperature-grown (LTG)-GaAs buffers with subsequent in-situ thermal annealing at Ts = 600 °C. Reflection high energy electron diffraction confirms the layer-by-layer growth mode of the GaAs on Si. X-ray diffraction shows the improvement in crystallinity as growth temperature is increased. The THz time-domain spectroscopy is performed in reflection and transmission excitation geometries. At Ts = 320 °C, the low crystallinity of GaAs on Si makes it an inferior THz emitter in reflection geometry, over a GaAs grown at the same temperature on a semi-insulating GaAs substrate. However, in transmission geometry, the GaAs on Si exhibits less absorption losses. At higher Ts, the GaAs on Si thin films emerge as promising THz emitters despite the presence of antiphase boundaries and threading dislocations as identified from scanning electron microscopy and Raman spectroscopy. An intense THz emission in reflection and transmission excitation geometries is observed for the GaAs on Si grown at Ts = 520 °C, suggesting the existence of an optimal growth temperature for GaAs on Si at which the THz emission is most efficient in both excitation geometries. The results are significant in the growth design and fabrication of GaAs on Si material system intended for future THz photoconductive antenna emitter devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All data are available upon reasonable request from the authors.

References

  1. T. Yoshioka, S. Takatori, P.H. Minh, M. Catadal-Raduban, T. Nakazato, T. Shimizu, N. Sarakura, E. Estacio, J.V. Misa, R. Jaculbia, M. Defensor, A. Somintac, A. Salvador, Terahertz Emission from GaAs Films on Si (100) and Si (111) Substrates grown by molecular beam epitaxy. Infrared Milli Terahertz Waves 32(4), 418–425 (2011)

    Article  CAS  Google Scholar 

  2. E. Estacio, S. Takatori, M.H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C.T. Que, M. Tani, T. Edamura, M. Nakajima, J.V. Misa, R. Jaculbia, A. Somintac, A. Salvador, Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation. Appl. Phys. B 103, 825–829 (2011)

    Article  CAS  Google Scholar 

  3. J. Klier, G. Torosyan, N.S. Schreiner, D. Molter, F. Ellrich, W. Zouaghi, E. Peytavit, J.-F. Lampin, R. Beigang, J. Jonuscheit, G.V. Freymann, Influence of substrate material on radiation characteristics of THz photoconductive emitters. Int. J. Antennas Propag. (2015). https://doi.org/10.1155/2015/540175

    Article  Google Scholar 

  4. R. Fischer, N. Chand, W. Kopp, H. Morkoç, L.P. Erickson, R. Youngman, GaAs bipolar transistors grown on (100) Si substrates by molecular beam epitaxy. Appl. Phys. Lett. 47, 397–399 (1985)

    Article  CAS  Google Scholar 

  5. D.A. Neumann, H. Zabel, R. Fischer, H. Morkoç, Structural properties of GaAs on (001) oriented Si and Ge substrates. J. Appl. Phys. 61, 1023–1029 (1987)

    Article  CAS  Google Scholar 

  6. S.M. Koch, S.J. Rosner, R. Hull, G.W. Yoffe, J.S. Harris, The growth of GaAs on Si by MBE. J. Cryst. Growth 81, 205–213 (1987)

    Article  CAS  Google Scholar 

  7. J.W. Lee, H. Shichijo, H.L. Tsai, R.J. Matyi, Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates. Appl. Phys. Lett. 50, 31–33 (1987)

    Article  CAS  Google Scholar 

  8. S.F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, N. Otsuka, Gallium arsenide and other compound semiconductors on silicon. J. Appl. Phys. 68, R31–R58 (1990)

  9. P. Taylor, W. Jesser, J. Benson, M. Martinka, J. Dinan, J. Bradshaw, M. Lara-Taysing, R. Leavitt, G. Simonis, W. Chang, W. Clark III., K. Bertness, Optoelectronic device performance on reduced threading dislocation density Gaas/Si. J. Appl. Phys. 89, 4365–4375 (2001)

    Article  CAS  Google Scholar 

  10. W. Stolz, F.E.G. Guimaraes, K. Ploog, Optical and structural properties of GaAs grown on (100) Si by molecular beam epitaxy. J. Appl. Phys. 63, 492–499 (1987)

    Article  Google Scholar 

  11. Y.B. Bolkhovityanov, O.P. Pchelyakov, GaAs epitaxy on Si substrates: modern status of research and engineering. Phys. Usp. 51, 437–456 (2008)

    Article  CAS  Google Scholar 

  12. Y. Buzynin, V. Shengurov, B. Zvonkov, A. Buzynin, S. Denisov, N. Baidus, M. Drozdov, D. Pavlov, P. Yunin, GaAs/Ge/Si epitaxial substrates: development and characteristics. AIP Adv. 7, 1–7 (2017)

    Article  Google Scholar 

  13. C. Kang, J.W. Leem, I. Maeng, T.H. Kim, J.S. Lee, J.S. Yu, C.-S. Kee, Strong emission of terahertz radiation from nanostructured Ge surfaces. Appl. Phys. Lett. 106, 261106 (2015)

    Article  Google Scholar 

  14. I. Maeng, G. Lee, C. Kang, G.W. Ju, K. Park, S.B. Son, Y.T. Lee, C.S. Kee, Strong emission of THz radiation from GaAs microstructures on Si. AIP Adv. 8(12), 125 (2018)

  15. M. Tani, S. Matsuura, K. Sakai, S. Nakashima, Emission characteristics of photoconductive antennas based on low-temperature grown GaAs and semi-insulating GaAs. Appl. Opt. 36, 7853–7859 (1997)

    Article  CAS  Google Scholar 

  16. Y. Kamo, S. Kitazawa, S. Ohshima, Y. Hosoda, Highly efficient photoconductive antennas using optimum low-temperature-grown GaAs layers and Si substrates. Jpn. J. Appl. Phys. 53, 032201 (2014)

    Article  CAS  Google Scholar 

  17. R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X.Y. Bao, J.B. Pin, T. Baron, Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater. 4, 046101 (2016)

    Article  Google Scholar 

  18. T. Ohba, S. Ikawa, Far-infrared absorption of silicon crystals. J. Appl. Phys. 64, 4141–4143 (1988)

    Article  CAS  Google Scholar 

  19. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006–2015 (1990)

    Article  CAS  Google Scholar 

  20. J. Dai, J. Zhang, W. Zhang, D. Grischkowsky, Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon. J. Opt. Soc. Am. B 21, 1379–1386 (2004)

    Article  CAS  Google Scholar 

  21. D.C. Look, Z.-Q. Fang, J.R. Sizelove, C.E. Stutz, New as ga related center in GaAs. Phys. Rev. Lett. 70, 465–468 (1993)

    Article  CAS  Google Scholar 

  22. M. Missous, Stoichiometric low temperature (SLT) GaAs and Al-GaAs grown by molecular beam epitaxy. Microelectron. J. 27, 393–409 (1996)

    Article  CAS  Google Scholar 

  23. E.A.P. Prieto, S.A.B. Vizcara, L.P. Lopez, J.D.E. Vasquez, M.H.M. Balgos, D. Hashizume, N. Hayazawa, Y. Kim, M. Tani, A.S. Somintac, A.A. Salvador, E.S. Estacio, Intense THz emission in high quality MBE-grown GaAs film with a thin n-doped buffer. Opt. Mater. Express 8, 1463–1471 (2018)

    Article  CAS  Google Scholar 

  24. S. Nishi, H. Inomata, M. Akiyama, K. Kaminishi, Growth of single domain GaAs on 2-inch Si (100) substrate by molecular beam epitaxy. Jpn. J. Appl. Phys. 24, L391–L393 (1985)

    Article  Google Scholar 

  25. K. Asai, K. Kamei, H. Katahama, Lattice relaxation of GaAs islands grown on Si (100) substrate. Appl. Phys. Lett. 71, 701–703 (1997)

    Article  CAS  Google Scholar 

  26. E.A.P. Prieto, S.A.B. Vizcara, A.S. Somintac, A.A. Salvador, E.S. Estacio, C.T. Que, K. Yamamoto, M. Tani, Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries. J. Opt. Soc. Am. B 31, 291–295 (2014)

    Article  CAS  Google Scholar 

  27. K. Sprung, K. Wilke, G. Heymann, J. Varrio, M. Pessa, GaAs single domain growth on exact (100) Si substrate. Appl. Phys. Lett. 62, 2711–2712 (1993)

    Article  CAS  Google Scholar 

  28. I. Németh, B. Kunert, W. Stolz, K. Volz, Heteroepitaxy of GaP on Si: correlation of morphology, anti-phase-domain structure and MOVPE growth conditions. J. Crys. Growth 310, 1595–1601 (2008)

    Article  Google Scholar 

  29. O. Rubel, S. Baranovskii, Formation energies of antiphase boundaries in GaAs and GaP: an ab initio study. Int. J. Mol. Sci. 10, 5104–5114 (2009)

    Article  CAS  Google Scholar 

  30. J.W. Lee, H.L. Tsai, Crystal orientations and defect structures of GaAs layers grown on misoriented Si substrates by molecular-beam epitaxy. J. Vac. Sci. Technol. B 5, 819–821 (1987)

    Article  CAS  Google Scholar 

  31. R. Farrow, Molecular Beam Epitaxy: Applications to Key Materials, Materials Science and Process Technology Series: Electronic Materials and Process Technology, Elsevier Science, 2012. https://books.google.com.ph/books?id=EuI6WV8NlnkC.

  32. M. Henini, Molecular Beam Epitaxy: From Research to Mass Production (Elsevier, Amsterdam, 2018). https://books.google.com.ph/books?id=sXhiDwAAQBAJ.

  33. M. Levinshtein, Handbook Series on Semiconductor Parameters, number v.1 in Handbook series on semiconductor parameters, World Scientific. (1997). https://books.google.com.ph/books?id=MSoNFpljBIEC.

  34. J. Afalla, K.C. Gonzales, E.A. Prieto, G. Catindig, J.D. Vasquez, H.A. Husay, M.A. Tumanguil-Quitoras, J. Muldera, H. Kitahara, A. Somintac, A. Salvador, E. Estacio, M. Tani, Photoconductivity, carrier lifetime and mobility evaluation of GaAs films on Si (100) using optical pump terahertz probe measurements. Semicond. Sci. Technol. 34, 035031 (2019)

    Article  CAS  Google Scholar 

  35. R. Loudon, The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964)

    Article  CAS  Google Scholar 

  36. B. Prévot, J. Wagner, Raman characterization of semiconducting materials and related structures. Prog. Crys. Growth Charact. Mater. 22, 245–319 (1991)

    Article  Google Scholar 

  37. G. Abstreiter, E. Bauser, A. Fischer, K. Ploog, Raman spectroscopy—a versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1-x as. Appl. Phys. 16, 345–352 (1978)

    Article  CAS  Google Scholar 

  38. S. Nakashima, Y. Nakatake, Y. Ishida, T. Talkahashi, H. Okumura, Detection of defects in SiC crystalline films by raman scattering. Phys. B 308–310, 684686 (2001)

    Google Scholar 

  39. C. Kranert, R. Schmidt-Grund, M. Grundmann, Surface- and point defect-related Raman scattering in wurtzite semiconductors excited above the band gap. N. J. Phys. 15, 113048 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

E. A. Prieto, A. Somintac, E. Estacio and A. Salvador acknowledge the Office of the Chancellor of the University of the Philippines Diliman, through the Office of the Vice Chancellor for Research and Development, for funding support through the Outright Research Grant. The authors also acknowledge the support in part by the Commission on Higher Education Philippine—California Advanced Research Institutes (IIID-2015-013) as well as the assistance of R. Jagus and K. Patrocenio in maintaining the molecular beam epitaxy facility of the National Institute of Physics, University of the Philippines Diliman.

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization, analysis, investigation, and validation of the work are credited to KC Gonzales, EA Prieto, E Estacio, and A Salvador. The data acquisition and methodology are performed by KC Gonzales, EA Prieto, GA Catindig, A De Los Reyes, MA Faustino, MA Tumanguil-Quitoras, HA Husay, and JD Vasquez. The manuscript writing is done by KC Gonzales, EA Prieto, GA Catindig, E Estacio, and A Salvador. The supervision, resources, and funding acquisition are through the efforts of EA Prieto, A Somintac, E Estacio, and A Salvador. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Karl Cedric Gonzales or Elizabeth Ann Prieto.

Ethics declarations

Conflict of interest

The authors declare no known conflicts of interest or competing interests that are directly or indirectly related to the work.

Research involving human participants and/or animals

The research does not involve human participants and/or animals.

Consent for publication

The publication has been approved by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzales, K.C., Prieto, E.A., Catindig, G.A. et al. Terahertz emission increase in GaAs films exhibiting structural defects grown on Si (100) substrates using a two-layered LTG-GaAs buffer system. J Mater Sci: Mater Electron 32, 13825–13836 (2021). https://doi.org/10.1007/s10854-021-05958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05958-8

Navigation