Skip to main content
Log in

RETRACTED ARTICLE: Crystalline growth of tungsten trioxide (WO3) nanorods and their development as an electrochemical sensor for selective detection of vitamin C

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 09 March 2023

This article has been updated

Abstract

Tungstate nanorods (WO3 -NRs) were synthesized by a facile hydrothermal method using sodium tungstate as a precursor while sodium sulfate and hydrochloric acid were used as stabilizing agents. Scanning electron microscopy (SEM) images showed outstanding growth of WO3-NRs with uniform surface morphology. The X-ray diffraction (XRD) analysis confirmed the purity and crystalline nature of the synthesized material. The material was further characterized by different tools such as TEM, EDX, FTIR, XPS, BET, and Raman spectroscopy. For the electrochemical response of WO3-NRs, cyclic voltammetry measurements were performed for the detection of vitamin C (ascorbic acid). The designed sensor shows a limit of detection of 0.56 µM and higher selectivity in the presence of its structural and functional analogs such as uric acid and lauric acid. Improved sensing properties of WO3-NRs are attributed to the synergistic effects involving the quantum effect, high surface area, fast electron transfer, and highly ordered 1-D nanostructure. Among them, the highly arranged 1-D growth of WO3 nanorods has a greater impact on the efficiency of the biosensor. These results provide a new insight for the synthesis of 1-D nanostructures of transition metal oxides for contributions in sensor devices, solar cells, and capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. S.M. AlShehri et al., Synthesis, characterization, and enhanced photocatalytic properties of NiWO 4 nanobricks. New J. Chem. 41(16), 8178–8186 (2017)

    Article  CAS  Google Scholar 

  2. R. Saha, D. Arunprasath, G. Sekar, Surface enriched palladium on palladium-copper bimetallic nanoparticles as catalyst for polycyclic triazoles synthesis. J. Catal. 377, 673–683 (2019)

    Article  CAS  Google Scholar 

  3. O. Kalawa et al., Synthesis and electrochemical properties of polymer solution prepared MnCo2O4 nanoparticles. Ionics 26(1), 457–469 (2020)

    Article  CAS  Google Scholar 

  4. L.T.L. Anh, Tailoring the structure and morphology of WO3 nanostructures by hydrothermal method. Vietnam J. Sci. Technol. 56(1A), 127 (2018)

    Article  Google Scholar 

  5. H. Bagheri et al., Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard. Mater. 324, 762–772 (2017)

    Article  CAS  Google Scholar 

  6. S. Jing et al., A novel electrochemical sensor based on WO3 nanorods-decorated poly(sodium 4-styrenesulfonate) functionalized graphene nanocomposite modified electrode for detecting of puerarin. Talanta 174, 477–485 (2017)

    Article  CAS  Google Scholar 

  7. V. Hariharan et al., A review on tungsten oxide (WO3) and their derivatives for sensor applications. Int. J. Adv. Sci. Eng. 5, 1163–1168 (2019)

    Article  CAS  Google Scholar 

  8. R. Ahmad et al., Solution process synthesis of high aspect ratio ZNO nanorods on electrode surface for sensitive electrochemical detection of uric acid. Sci. Rep. 7(1), 46475 (2017)

    Article  CAS  Google Scholar 

  9. N.P. Shetti et al., ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 141, 111417 (2019)

    Article  CAS  Google Scholar 

  10. N. Van Toan et al., Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance. Mater. Sci. Eng. B 224, 163–170 (2017)

    Article  Google Scholar 

  11. H.K. Chang et al., Enhanced response of the photoactive gas sensor on formaldehyde using porous heterostructure driven by gas-flow thermal evaporation and atomic layer deposition. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.172

    Article  Google Scholar 

  12. X. Gu, C. Lai, One dimensional nanostructures contribute better Li–S and Li–Se batteries: progress, challenges and perspectives. Energy Storage Mater. 23, 190–224 (2019)

    Article  Google Scholar 

  13. P. Li, W. Chen, Recent advances in one-dimensional nanostructures for energy electrocatalysis. Chin. J. Catal. 40(1), 4–22 (2019)

    Article  CAS  Google Scholar 

  14. J. Besnardiere et al., Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO3. Nature Commun. 10(1), 1–9 (2019)

    Article  CAS  Google Scholar 

  15. Z. Bi et al., Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and prussian white. ACS Appl. Mater. Interfaces 9(35), 29872–29880 (2017)

    Article  CAS  Google Scholar 

  16. X. Chen et al., A nanoclay-based magnetic/fluorometric bimodal strategy for ascorbic acid detection. Sens. Actuators B Chem. 246, 344–351 (2017)

    Article  CAS  Google Scholar 

  17. Y. Diao et al., Magnetic multi-metal co-doped magnesium ferrite nanoparticles: an efficient visible light-assisted heterogeneous fenton-like catalyst synthesized from saprolite laterite ore. J. Hazard. Mater. 344, 829–838 (2018)

    Article  CAS  Google Scholar 

  18. R. Ponnusamy, B. Chakraborty, C.S. Rout, Pd-Doped WO3 nanostructures as potential glucose sensor with insight from electronic structure simulations. J. Phys. Chem. B 122(10), 2737–2746 (2018)

    Article  CAS  Google Scholar 

  19. R. Ponnusamy et al., Tuning the pure monoclinic phase of WO3 and WO3-Ag nanostructures for non-enzymatic glucose sensing application with theoretical insight from electronic structure simulations. J. Appl. Phys. 123(2), 024701 (2018)

    Article  Google Scholar 

  20. V.K. Gangaiah et al., Controllable synthesis of h-WO3 Nanoflakes by L-lysine assisted hydrothermal route and electrochemical characterization of Nanoflakes modified glassy carbon electrode. Mater. Phys. Chem. 1(1), 7 (2018)

    Article  Google Scholar 

  21. M. Govindasamy et al., Ultrasound-assisted synthesis of tungsten trioxide entrapped with graphene nanosheets for developing nanomolar electrochemical (hormone) sensor and enhanced sensitivity of the catalytic performance. Ultrason. Sonochem. 56, 132–134 (2019)

    Article  Google Scholar 

  22. J. Han et al., Mesoporous TiO2 with WO3 functioning as dopant and light-sensitizer: a highly efficient photocatalyst for degradation of organic compound. J. Hazard. Mater. 358, 44–52 (2018)

    Article  CAS  Google Scholar 

  23. J. Go et al., W/WO3− x based three-terminal synapse device with linear conductance change and high on/off ratio for neuromorphic application. Appl. Phys. Express 12(2), 026503 (2019)

    Article  Google Scholar 

  24. P. Kumar, P.K. Sarswat, M.L. Free, Hybridized tungsten oxide nanostructures for food quality assessment: fabrication and performance evaluation. Sci. Rep. 8(1), 3348 (2018)

    Article  Google Scholar 

  25. O. Kwon et al., Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nature Commun. 8, 15967 (2017)

    Article  CAS  Google Scholar 

  26. L. Ma et al., Highly selective and sensitive determination of several antioxidants in human breast milk using high-performance liquid chromatography based on Ag (III) complex chemiluminescence detection. Food Chem. 218, 422–426 (2017)

    Article  CAS  Google Scholar 

  27. D. Mandal, P. Routh, A.K. Nandi, A new facile synthesis of tungsten oxide from tungsten disulfide: structure dependent super capacitor and negative differential resistance properties. Small 14(4), 1702881 (2018)

    Article  Google Scholar 

  28. J. Mao et al., Geometric architecture design of ternary composites based on dispersive WO3 nanowires for enhanced visible-light-driven activity of refractory pollutant degradation. Chem. Eng. J. 334, 2568–2578 (2018)

    Article  CAS  Google Scholar 

  29. W. Mei et al., Low-temperature synthesis and sunlight-catalytic performance of flower-like hierarchical graphene oxide/ZnO macrosphere. J. Nanopart. Res. 20(11), 286 (2018)

    Article  Google Scholar 

  30. P. Bollella, L. Gorton, R. Antiochia, Direct electron transfer of dehydrogenases for development of 3rd generation biosensors and enzymatic fuel cells. Sensors 18(5), 1319 (2018)

    Article  Google Scholar 

  31. J.H. Luong et al., Achievement and assessment of direct electron transfer of glucose oxidase in electrochemical biosensing using carbon nanotubes, graphene, and their nanocomposites. Microchim. Acta 184(2), 369–388 (2017)

    Article  CAS  Google Scholar 

  32. V.K. Tomer et al., Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens. Actuators B Chem. 253, 703–713 (2017)

    Article  CAS  Google Scholar 

  33. P. Peng et al., Binary transition-metal oxide hollow nanoparticles for oxygen evolution reaction. ACS Appl. Mater. Interfaces 10(29), 24715–24724 (2018)

    Article  CAS  Google Scholar 

  34. A. Staerz, U. Weimar, N. Barsan, Understanding the potential of WO3 based sensors for breath analysis. Sensors 16(11), 1815 (2016)

    Article  Google Scholar 

  35. M. Priya, et al. 2019 Improved acetone sensing properties of electrospun Au-doped SnO2 nanofibers. In AIP conference proceedings. AIP Publishing, Melville, NY

  36. H. Karimi-Maleh, O.A. Arotiba, Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci. 560, 208–212 (2020)

    Article  CAS  Google Scholar 

  37. B. Demirkan et al., Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  38. B.G. Ruiz et al., Spectrophotometric method for fast quantification of ascorbic acid and dehydroascorbic acid in simple matrix for kinetics measurements. Food Chem. 211, 583–589 (2016)

    Article  Google Scholar 

  39. D. Sandil et al., Biofunctionalized nanostructured tungsten trioxide based sensor for cardiac biomarker detection. Mater. Lett. 186, 202–205 (2017)

    Article  CAS  Google Scholar 

  40. J. Scremin et al., Amperometric determination of ascorbic acid with a glassy carbon electrode modified with TiO2-gold nanoparticles integrated into carbon nanotubes. Microchim. Acta 185(5), 251 (2018)

    Article  Google Scholar 

  41. S. Shingubara, et al. 2019 Nonvolatile memories 6-and-surface characterization and manipulation for electronic applications. The Electrochemical Society.

  42. N.A. Shad et al., Solution growth of 1D zinc tungstate (ZnWO4) nanowires; design, morphology, and electrochemical sensor fabrication for selective detection of chloramphenicol. J. Hazard. Mater. 367, 205–214 (2019)

    Article  CAS  Google Scholar 

  43. N.S. Tayyab Raza et al., Fabrication of iron modified screen printed carbon electrode for sensing of amino acids. Polyhedron 180, 114426 (2020)

    Article  Google Scholar 

  44. D. Song et al., Ultra-thin bimetallic alloy nanowires with porous architecture/monolayer MoS2 nanosheet as a highly sensitive platform for the electrochemical assay of hazardous omethoate pollutant. J. Hazard. Mater. 357, 466–474 (2018)

    Article  CAS  Google Scholar 

  45. R. Aslam et al., Sensitive and high recovery electrochemical sensing of resorcinol by Cd–glutathione complex-modified glassy carbon electrode. Int. J. Environ. Analytical Chem. 1, 1–11 (2020)

    Google Scholar 

  46. B. Fatima et al., Tellurium doped zinc imidazole framework (Te@ZIF-8) for quantitative determination of hydrogen peroxide from serum of pancreatic cancer patients. Sci. Rep. 10(1), 21077–21077 (2020)

    Article  CAS  Google Scholar 

  47. J. Tu et al., Ordered WO3–x nanorods: facile synthesis and their electrochemical properties for aluminum-ion batteries. Chem. Commun. 54(11), 1343–1346 (2018)

    Article  CAS  Google Scholar 

  48. P. Chen et al., Rapid and simple detection of ascorbic acid and alkaline phosphatase via controlled generation of silver nanoparticles and selective recognition. Analyst 144(4), 1147–1152 (2019)

    Article  CAS  Google Scholar 

  49. A. Szoke et al., Composite electrode material based on electrochemically reduced graphene oxide and gold nanoparticles for electrocatalytic detection of ascorbic acid. Electrocatalysis 10(5), 573–583 (2019)

    Article  CAS  Google Scholar 

  50. Y. Zhao et al., Gold nanorods decorated with graphene oxide and multi-walled carbon nanotubes for trace level voltammetric determination of ascorbic acid. Microchim. Acta 186(1), 17 (2019)

    Article  Google Scholar 

  51. X. Gao et al., Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the “on-off-on” fluorescence principle. Appl. Surf. Sci. 469, 911–916 (2019)

    Article  CAS  Google Scholar 

  52. L.I. Tomé, C.M. Brett, Polymer/iron oxide nanoparticle modified glassy carbon electrodes for the enhanced detection of epinephrine. Electroanalysis 31(4), 704–710 (2019)

    Article  Google Scholar 

  53. Y. Wang et al., Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens. Actuators B Chem. 225, 544–552 (2016)

    Article  CAS  Google Scholar 

  54. J. Zhang et al., Facile synthesis 3D flower-like Ag@ WO3 nanostructures and applications in solar-light photocatalysis. J. Alloy. Compd. 757, 134–141 (2018)

    Article  CAS  Google Scholar 

  55. S. Zhang et al., Unexpected ultrafast and high adsorption capacity of oxygen vacancy-rich WOx/C nanowire networks for aqueous Pb 2+ and methylene blue removal. J. Mater. Chem. A 5(30), 15913–15922 (2017)

    Article  CAS  Google Scholar 

  56. P.A. Shinde et al., Facile synthesis of self-assembled WO3 nanorods for high-performance electrochemical capacitor. J. Alloy. Compd. 770, 1130–1137 (2019)

    Article  CAS  Google Scholar 

  57. T. Peng et al., Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation. J. Solid State Chem. 194, 250–256 (2012)

    Article  CAS  Google Scholar 

  58. S. Zhu et al., Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adv. Func. Mater. 27(9), 1605017 (2017)

    Article  Google Scholar 

  59. N. Lu et al., Enhanced formic acid gas-sensing property of WO3 nanorod bundles via hydrothermal method. Sens. Actuators B Chem. 223, 743–749 (2016)

    Article  CAS  Google Scholar 

  60. J. Zhang et al., Carbon nanodots/WO3 nanorods Z-scheme composites: remarkably enhanced photocatalytic performance under broad spectrum. Appl. Catal. B 209, 253–264 (2017)

    Article  CAS  Google Scholar 

  61. P. Periasamy et al., Investigation of electrochemical properties of microwave irradiated tungsten oxide (WO3) nanorod structures for super capacitor electrode in KOH electrolyte. Mater. Res. Express 5(8), 085007 (2018)

    Article  Google Scholar 

  62. B. Ahmed et al., Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 175, 250–261 (2017)

    Article  CAS  Google Scholar 

  63. B. Ahmed et al., Well-controlled in-situ growth of 2D WO3 rectangular sheets on reduced graphene oxide with strong photocatalytic and antibacterial properties. J. Hazard. Mater. 347, 266–278 (2018)

    Article  CAS  Google Scholar 

  64. J. Zhang et al., Carbon dots-decorated Na2W4O13 composite with WO3 for highly efficient photocatalytic antibacterial activity. J. Hazard. Mater. 359, 1–8 (2018)

    Article  CAS  Google Scholar 

  65. A. Ahmadi, M.Z. Shoushtari, M. Farbod, Photoelectrochemical application of WS2 nanosheets prepared via a low-temperature CVD method. J. Mater. Sci. 30, 1–8 (2019)

    Google Scholar 

  66. A. Jelinska et al., Enhanced photocatalytic water splitting on very thin WO3 films activated by high-temperature annealing. ACS Catal. 8(11), 10573–10580 (2018)

    Article  CAS  Google Scholar 

  67. C. Wang et al., One-pot synthesis of hierarchical WO3 hollow nanospheres and their gas sensing properties. RSC Adv. 5(38), 29698–29703 (2015)

    Article  Google Scholar 

  68. W. Zeng et al., Hydrothermal synthesis, characterization of h-WO3 nanowires and gas sensing of thin film sensor based on this powder. Thin Solid Films 584, 294–299 (2015)

    Article  CAS  Google Scholar 

  69. D. Wei et al., Electrochemical biosensors at the nanoscale. Lab Chip 9(15), 2123–2131 (2009)

    Article  CAS  Google Scholar 

  70. C. Piloto et al., Sensing performance of reduced graphene oxide-Fe doped WO3 hybrids to NO2 and humidity at room temperature. Appl. Surf. Sci. 434, 126–133 (2018)

    Article  CAS  Google Scholar 

  71. X. Mi et al., Enhanced catalytic degradation by using RGO-Ce/WO3 nanosheets modified CF as electro-Fenton cathode: Influence factors, reaction mechanism and pathways. J. Hazard. Mater. 367, 365–374 (2019)

    Article  CAS  Google Scholar 

  72. Y. Okawa, T. Shimada, F. Shiba, Formation of gold-silver hollow nanostructure via silver halide photographic processes and application to direct electron transfer biosensor using fructose dehydrogenase. J. Electroanal. Chem. 828, 144–149 (2018)

    Article  CAS  Google Scholar 

  73. L. Wang et al., Fabrication and high temperature electronic behaviors of n-WO3 nanorods/p-diamond heterojunction. Appl. Phys. Lett. 110(5), 052106 (2017)

    Article  Google Scholar 

  74. J. Huang et al., Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing. ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017)

    Article  CAS  Google Scholar 

  75. D. Han et al., Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis 22(17–18), 2001–2008 (2010)

    Article  CAS  Google Scholar 

  76. K.S. Ngai et al., Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide. Int. J. Electrochem. Sci 8, 10557–10567 (2013)

    CAS  Google Scholar 

  77. D.-F. Han et al., Electro-oxidation of ascorbic acid on PVP-stabilized graphene electrode. Chem. Res. Chin. Univ. 26(2), 287–290 (2010)

    Google Scholar 

  78. Q. Li et al., Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem. 260, 346–356 (2018)

    Article  CAS  Google Scholar 

  79. Q. Lian et al., Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal. Chim. Acta 823, 32–39 (2014)

    Article  CAS  Google Scholar 

  80. R. Mohammad-Rezaei, H. Razmi, M. Jabbari, Graphene ceramic composite as a new kind of surface-renewable electrode: application to the electroanalysis of ascorbic acid. Microchim. Acta 181(15–16), 1879–1885 (2014)

    Article  CAS  Google Scholar 

  81. H. Zhang et al., Fabrication of nanoflower-like dendritic Au and polyaniline composite nanosheets at gas/liquid interface for electrocatalytic oxidation and sensing of ascorbic acid. Electrochem. Commun. 30, 46–50 (2013)

    Article  Google Scholar 

  82. M. Zidan et al., Electrocatalytic oxidation of paracetamol mediated by lithium doped microparticles Bi2O3/MWCNT modified electrode. Asian J. Chem. 23(7), 3029 (2011)

    CAS  Google Scholar 

  83. A.T. Lawal, Progress in utilisation of graphene for electrochemical biosensors. Biosens. Bioelectron. 106, 149–178 (2018)

    Article  CAS  Google Scholar 

  84. M. Liu et al., A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@ Au nanoparticles with graphene sheet. Biosens. Bioelectron. 48, 75–81 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed A. Shad.

Ethics declarations

Conflict of interest

There are no competing financial interests declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10854-023-10205-3"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikram, M., Sajid, M.M., Javed, Y. et al. RETRACTED ARTICLE: Crystalline growth of tungsten trioxide (WO3) nanorods and their development as an electrochemical sensor for selective detection of vitamin C. J Mater Sci: Mater Electron 32, 6344–6357 (2021). https://doi.org/10.1007/s10854-021-05351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05351-5

Navigation