Skip to main content
Log in

Single-step fabrication of ZnO microflower thin films for highly efficient and reusable photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide microflower thin films were deposited in a single-step process using cost-effective ultrasonic spray pyrolysis technique. Different molarity of precursor solution was used to grow the films. X-ray diffraction and Raman spectroscopy reveal the wurtzite structure of ZnO. Scanning electron microscope images showed the microflower morphology which has a better surface to volume ratio. Defects such as O interstitial and Zn vacancy were identified in these thin films with the help of photoluminescence (PL) spectroscopy. The contact angle of the films was found to decrease with increase in molarity of the precursor. Photocatalytic activity of three different molar samples (0.05, 0.1 and 0.15 M) of ZnO were studied for methylene blue (MB) degradation and 0.15 M film demonstrated better degradation efficiency under UV–Vis light. Further degradation studies were performed on this film under exposure to natural sunlight. 90% degradation of the dye was observed in both the conditions upon exposure of 3.5 h. Effect of defects, molarity, bandgap and contact angle of ZnO on the photocatalytic performance is discussed. Repeatability studies performed under both UV–Vis and natural sunlight exposures showed only a minor deviation of 1% from the initial degradation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Zollinger, Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments (Angewandte Chemie International Edition, Hoboken, 2004)

    Google Scholar 

  2. A.R. Khataee, M.B. Kasiri, J. Mol. Catal. A 328, 8–26 (2010)

    CAS  Google Scholar 

  3. Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan, NanoImpact. 3–4, 22–39 (2016). https://doi.org/10.1016/j.impact.2016.09.004

    Article  Google Scholar 

  4. O. Legrini, E. Oliveros, A.M. Braun, Chem. Rev. 93, 671–698 (1993)

    CAS  Google Scholar 

  5. X. Liang, D. Fu, R. Liu, Q. Zhang, T.Y. Zhang, X. Hu, Angew. Chem. 44, 5520–5523 (2005)

    CAS  Google Scholar 

  6. N. Daneshvar, A.R. Khataee, A.R. Amani Ghadim, M.H. Rasoulifard, J. Hazardous Mater. 148, 566–572 (2007)

    CAS  Google Scholar 

  7. M.K. Singha, A. Patra, V. Rojwal, K.G. Deepa, D. Kumar, AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5093841

    Article  Google Scholar 

  8. Y. Huang, D. Ding, M. Zhu, W. Meng, Y. Huang, F. Geng, J. Li, J. Lin, C. Tang, Z. Lei, Z. Zhang, C. Zhi, Sci. Technol. Adv. Mater. (2015). https://doi.org/10.1088/1468-6996/16/1/014801

    Article  Google Scholar 

  9. I.M. Szilágyi, B. Fórizs, O. Rosseler, Á. Szegedi, P. Németh, P. Király, G. Tárkányi, B. Vajna, K. Varga-Josepovits, K. László, A.L. Tóth, P. Baranyai, M. Leskelä, J. Catal. 294, 119–127 (2012). https://doi.org/10.1016/j.jcat.2012.07.013

    Article  CAS  Google Scholar 

  10. W. Zhang, J. Liu, Z. Guo, S. Yao, H. Wang, J. Mater. Sci. 28, 9505–9513 (2017). https://doi.org/10.1007/s10854-017-6694-z

    Article  CAS  Google Scholar 

  11. C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    CAS  Google Scholar 

  12. W. Liu, J. Wu, Y. Yang, H. Yu, X. Dong, X. Wang, Z. Liu, T. Wang, B. Zhao, J. Mater. Sci. 29, 4624–4631 (2018). https://doi.org/10.1007/s10854-017-8413-1

    Article  CAS  Google Scholar 

  13. L. Han, J. Chen, Y. Zhang, Y. Liu, L. Zhang, Mater. Lett. 210, 8–11 (2018). https://doi.org/10.1016/j.matlet.2017.08.065

    Article  CAS  Google Scholar 

  14. B.J. Rani, A. Anusiya, M. Praveenkumar, S. Ravichandran, R.K. Guduru, G. Ravi, R. Yuvakkumar, J. Mater. Sci. 30, 731–745 (2019)

    CAS  Google Scholar 

  15. L. Du, Y. Li, S. Li, H. Li, L. Liu, Y. Cheng, H. Duan, J. Mater. Sci. 29, 244–250 (2018)

    CAS  Google Scholar 

  16. P.S. Chauhan, A. Rai, A. Gupta, S. Bhattacharya, Mater. Res. Express. 4, 055004 (2017). https://doi.org/10.1088/2053-1591/aa6d31

    Article  CAS  Google Scholar 

  17. M.A. Khan, M.K. Singha, K.K. Nanda, S.B. Krupanidhi, Appl. Surf. Sci. 505, 144365 (2020)

    Google Scholar 

  18. M. Marie, S. Mandal, O. Manasreh, Sensors 15, 18714–18723 (2015)

    CAS  Google Scholar 

  19. J. Chen, W. Lei, W. Chai, Z. Zhang, C. Li, X. Zhang, Solid-State Electron. 52, 294–298 (2008)

    CAS  Google Scholar 

  20. M.K. Singha, A. Patra, IEEE Sensors Appl. Symp. 2019, 1–4 (2019). https://doi.org/10.1109/SAS.2019.8705997

    Article  Google Scholar 

  21. M.-W. Ahn, K.-S. Park, J.-H. Heo, D.-W. Kim, K.J. Choi, J.-G. Park, Sens. Actuators B 138, 168–173 (2009)

    CAS  Google Scholar 

  22. J. Zhao, L. Hu, Z. Wang, Z. Wang, H. Zhang, Y. Zhao, X. Liang, J. Cryst. Growth 280, 455–461 (2005)

    CAS  Google Scholar 

  23. C. Vargas-Hernández, F.N. Jiménez-García, J.F. Jurado, V. HenaoGranada, Microelectr. J. 39, 1349–1350 (2008)

    Google Scholar 

  24. O.A. Fouad, A.A. Ismail, Z.I. Zaki, R.M. Mohamed, Appl. Catal. B 62, 144–149 (2006)

    CAS  Google Scholar 

  25. F. Fleischhaker, V. Wloka, I. Hennig, J. Mater. Chem. 20, 6622–6625 (2010)

    CAS  Google Scholar 

  26. B. Hahn, G. Heindel, E. Pschorr-Schoberer, W. Gebhardt, Semicond. Sci. Technol. 13, 788 (1998)

    CAS  Google Scholar 

  27. H.J. Ko, Y. Chen, S.K. Hong, T. Yao, J. Cryst. Growth 209, 816–821 (2000)

    CAS  Google Scholar 

  28. M.K. Singha, A. Patra, Opt. Mater. 107, 110000 (2020)

    CAS  Google Scholar 

  29. S. BenYahia, L. Znaidi, A. Kanaev, J.P. Petitet, Spectrochim. Acta 71, 1234–1238 (2008)

    Google Scholar 

  30. R. Zhang, P.G. Yin, N. Wang, L. Guo, Solid State Sci. 11, 865–869 (2009)

    Google Scholar 

  31. M.K. Singha, K.G. Deepa, Band Gap Tailoring and Raman Studies of Mn Doped ZnO Thin Film Deposited by Ultrasonic Spray Pyrolysis (Springer, Cham, 2019), pp. 535–540

    Google Scholar 

  32. V.A. Nikitenko, V.G. Plekhanov, S.V. Mukhin, M.V. Tkachev, J. Appl. Spectrosc. 63, 290–292 (2007). https://doi.org/10.1007/bf02606743

    Article  Google Scholar 

  33. Y. Huang, M. Liu, Z. Li, Y. Zeng, S. Liu, Mater. Sci. Eng. B 97, 111–116 (2003). https://doi.org/10.1016/S0921-5107(02)00396-3

    Article  Google Scholar 

  34. F. Decremps, J. Pellicer-Porres, A.M. Saitta, J.C. Chervin, A. Polian, Phys. Rev. B 65, 921011–921014 (2002)

    Google Scholar 

  35. J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, Y.F. Lu, Appl. Surf. Sci. 197–198, 362–367 (2002)

    Google Scholar 

  36. A.K. Ojha, M. Srivastava, S. Kumar, R. Hassanein, J. Singh, M.K. Singh, A. Materny, Vib. Spectrosc. 72, 90–96 (2014). https://doi.org/10.1016/j.vibspec.2014.02.013

    Article  CAS  Google Scholar 

  37. R.P. Wang, G. Xu, P. Jin, Phys. Rev. B 69, 5–8 (2004). https://doi.org/10.1103/PhysRevB.69.113303

    Article  CAS  Google Scholar 

  38. J. Rouhi, M. Alimanesh, S. Mahmud, R.A. Dalvand, C.H.R. Ooi, M. Rusop, Mater. Lett. 125, 147–150 (2014)

    CAS  Google Scholar 

  39. M.F. Malek, M.H. Mamat, Z. Khusaimi, M.Z. Sahdan, M.Z. Musa, A.R. Zainun, A.B. Suriani, N.D.M. Sin, S.B.A. Hamid, M. Rusop, J. Alloy. Compd. 582, 12–21 (2014)

    CAS  Google Scholar 

  40. G.Z. Xing, B. Yao, C.X. Cong, T. Yang, Y.P. Xie, B.H. Li, D.Z. Shen, Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering. J. Alloy. Compd. 457, 36–41 (2008)

    CAS  Google Scholar 

  41. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, J. Appl. Phys. 98, 1–103 (2005)

    Google Scholar 

  42. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287–2294 (1998)

    CAS  Google Scholar 

  43. M. Jiang, D.D. Wang, B. Zou, Z.Q. Chen, A. Kawasuso, T. Sekiguchi, Physica Status Solidi (A) 209, 2126–2130 (2012)

    CAS  Google Scholar 

  44. D.P. Mechanisms, D.C. Reynolds, P. Air, F. Base, Science 101, 643–646 (1997)

    Google Scholar 

  45. M. Ghosh, A.K. Raychaudhuri, Nanotechnology. 19, 445704 (2008)

    Google Scholar 

  46. X.L. Xu, S.P. Lau, J.S. Chen, G.Y. Chen, B.K. Tay, J. Cryst. Growth 223, 201–205 (2001)

    CAS  Google Scholar 

  47. M. Shaban, M. Zayed, H. Hamdy, RSC Adv. 7, 617–631 (2017)

    CAS  Google Scholar 

  48. P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, T. Ratana, Thin Solid Films 520, 5561–5567 (2012)

    CAS  Google Scholar 

  49. J. Zhang, W. Huang, Y. Han, Langmuir 22, 2946–2950 (2006)

    CAS  Google Scholar 

  50. J. Bico, C. Tordeux, D. Quere, Europhys. Lett. 55, 214–220 (2001)

    CAS  Google Scholar 

  51. A. Riaz, A. Ashraf, H. Taimoor, S. Javed, M.A. Akram, M. Islam, M. Mujahid, I. Ahmad, K. Saeed, Coatings 9, 202–216 (2019)

    CAS  Google Scholar 

  52. X. Guo, Q. Zhao, R. Li, H. Pan, X. Guo, A. Yin, W. Dai, Opt. Express. 18, 18401 (2010)

    CAS  Google Scholar 

  53. L. Xu, G. Zheng, F. Xian, J. Su, Mater. Chem. Phys. 229, 215–225 (2019)

    CAS  Google Scholar 

  54. N.M. Flores, U. Pal, R. Galeazzi, A. Sandoval, RSC Adv. 4, 41099–41110 (2014)

    CAS  Google Scholar 

  55. Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Y. Zhu, Inorg. Chem. 46, 6675–6682 (2007). https://doi.org/10.1021/ic062394m

    Article  CAS  Google Scholar 

  56. R. Ahumada-Lazo, L.M. Torres-Martínez, M.A. Ruíz-Gómez, O.E. Vega-Becerra, M.Z. Figueroa-Torres, Appl. Surf. Sci. 322, 35–40 (2014). https://doi.org/10.1016/j.apsusc.2014.10.049

    Article  CAS  Google Scholar 

  57. A.A. Aal, S.A. Mahmoud, A.K. Aboul-Gheit, Mater. Sci. Eng. C 29, 831–835 (2009). https://doi.org/10.1016/j.msec.2008.07.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge MNFC, CENSE, IISc Bangalore for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monoj Kumar Singha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, M.K., Patra, A., Rojwal, V. et al. Single-step fabrication of ZnO microflower thin films for highly efficient and reusable photocatalytic activity. J Mater Sci: Mater Electron 31, 13578–13587 (2020). https://doi.org/10.1007/s10854-020-03914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03914-6

Navigation