Synthesis and study of structure and phase composition in Cu2–xS, SnxSy, ZnS, CuxSnSy and CuZnSnS pellets

  • R. E. Gómez-Solano
  • J. S. Arias-CerónEmail author
  • J. J. Ríos-Ramírez
  • Mauricio Ortega-López


Synthesis of pure single-phase Cu2ZnSnS4 (CZTS) has attracted much attention of some laboratories and investigation centers around the world. This is important in order to eliminate secondary phases which are detrimental to the final conversion efficiency of the CZTS solar cells. Pseudo-ternary phase diagram showed the formation of pure CZTS using the mixture of Cu2S, SnS2 and ZnS binary sulfides; nevertheless, the gap is very narrow. An additional problem lies in the effective determination of the CZTS purity, because some secondary phases display similar X-ray diffraction and Raman spectra as those of CZTS. The present work addresses a simple, fast and economical synthesis method for the preparation of some binary, ternary and CZTS pellets, which were prepared from their corresponding co-precipitated powders. These tablets can be used not only as a sputtering target but also as a precursor in a solid-state reaction. Among the various prepared compounds, Cu2−xS–SnxSy–ZnS and CuxSnSy are included and characterized to identify their presence in the CZTS pellets. From the obtained results, the usefulness of co-precipitation as a method to produce highly pure single-phase CZTS is discussed.



The authors would like to acknowledge to the research assistants Adolfo Tavira (X-ray measurements), Miguel Avendaño (Raman measurements) and Angel Guillén (EDS-SEM) but also Alvaro Guzmán (Laboratory technician). This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT Mexico) scholarship (336583) provided to Gómez-Solano studying at CINVESTAV-IPN.


  1. 1.
    X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, Int. J. Photoenergy 2014, 11 (2014)CrossRefGoogle Scholar
  2. 2.
    L.V. Piskach, I.D. Olekseyuk, I.V. Dudchak, J. Alloys Compd. 368, 135–143 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Ravindiran, C. Praveenkumar, Renew. Sustain. Energy. Rev 94, 317–329 (2018)CrossRefGoogle Scholar
  4. 4.
    H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express 1, 041201 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Guha, K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, Appl. Phys. Lett. 97, 143508 (2010)CrossRefGoogle Scholar
  6. 6.
    A.V. Moholkar, S.S. Shinde, A.R. Babar, K. Sim, H. Lee, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, J. Alloys Compd. 509, 7439–7446 (2011)CrossRefGoogle Scholar
  7. 7.
    H. Araki, Y. Kubo, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Phys. Status. Solidi C 6, 5 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Wangperawong, J.S. King, S.M. Herron, B.P. Tran, K. Pangan-Okimoto, S.F. Bent, Thin Solid Films 519, 2488–2492 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Sol. Energy. Mater. Sol. Cells 95, 2855–2860 (2011)CrossRefGoogle Scholar
  10. 10.
    Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, V.S. Raja, Phys. Status. Solidi A 206, 1525–1530 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Lerch, A. Ritscher, J. Just, O. Dolotko, S. Schorr, J. Alloys Compd. 670, 289–296 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Gong, Y. Wang, J. Electrochem. Soc. 158, 8 (2011)CrossRefGoogle Scholar
  13. 13.
    G.L. Chen, W.H. Wang, P.Y. Lin, H.L. Cai, B.W. Chen, X.J. Huang, J.M. Zhang, S.Y. Chen, Z.G. Huang, Ceram. Int 44, 18408–18412 (2018)CrossRefGoogle Scholar
  14. 14.
    A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, in Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, ed. by S.M. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Elsevier, New York, 2018), pp. 122–124Google Scholar
  15. 15.
    R. Nagarajan, P. Kumar, Inorg. Chem 50, 9204–9206 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Chaudhuri, S.K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya, Mater. Res. Bull 42, 576–583 (2007)CrossRefGoogle Scholar
  17. 17.
    S.Y. Chu, H.Y. Lu, S.S. Tan, J. Cryst. Growth 269, 385–391 (2004)CrossRefGoogle Scholar
  18. 18.
    V.S. Raja, U. Chalapathi, Y.B.K. Kumar, S. Uthanna, Thin Solid Films 556, 61–67 (2014)CrossRefGoogle Scholar
  19. 19.
    G.A. Hope, C.G. Munce, G.K. Parker, S.A. Holt, Colloids. Surf A 295, 152–158 (2007)CrossRefGoogle Scholar
  20. 20.
    J. Serrano, A. Canterero, M. Cordona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Phys. Rev. B 69, 014301 (2004)CrossRefGoogle Scholar
  21. 21.
    P.A. Fernandes, P.M.P. Salomé, A.F. Cunha, J. Phys. D 43, 215403 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Departamento de Ingeniería EléctricaCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)Mexico CityMexico
  2. 2.CONACYT - Departamento de Ingeniería EléctricaCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)Mexico CityMexico
  3. 3.Programa de Doctorado en Nanociencias y en NanotecnologíaCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)Mexico CityMexico

Personalised recommendations