Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Highly flexible and transparent film heaters based on colorless polyimide substrate with a GZO/AgNW/GZO sandwich structure

  • 23 Accesses

Abstract

In the past years, transparent film heaters (TFHs) based on silver nanowires (AgNWs) have attracted much attention because of their high transmittance, excellent flexibility, and great thermal response. In this paper, we fabricated flexible TFHs with a sandwich structure composed of Ga-doped ZnO (GZO) and AgNWs on the colorless polyimide (cPI) substrate. The optimized hybrid film exhibited a sheet resistance of 14.6 Ω sq−1 with a transmittance of 79%. Excellent thermal uniformity and heating stability of TFHs were demonstrated. The thermal response tests of the GZO/AgNW/GZO/cPI TFHs showed high saturation temperature (~ 176 ℃) with low input voltage (~ 6 V), fast response time (~ 15 s), and stable heating performance. These results indicate that the flexible TFHs with a GZO/AgNW/GZO sandwich structure have broad potential applications in flexible electronic devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    W. Lan, Y. Chen, Z. Yang, W. Han, J. Zhou, Y. Zhang, J. Wang, G. Tang, Y. Wei, W. Dou, Q. Su, E. Xie, ACS Appl. Mater. Interfaces 9, 6644–6651 (2017)

  2. 2.

    H. Kim, M. Seo, J.W. Kim, D.K. Kwon, S.E. Choi, J.W. Kim, J.M. Myoung, Adv. Funct. Mater. 29, 1901061 (2019)

  3. 3.

    S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, Y.B. Lee, C. Song, H.J. Hwang, J.H. Kim, T. Hyeon, D.-H. Kim, ACS Nano 9, 6626–6633 (2015)

  4. 4.

    J.J. Bae, S.C. Lim, G.H. Han, Y.W. Jo, D.L. Doung, E.S. Kim, S.J. Chae, T.Q. Huy, N. Van Luan, Y.H. Lee, Adv. Funct. Mater. 22, 4819–4826 (2012)

  5. 5.

    X. He, A. Liu, X. Hu, M. Song, F. Duan, Q. Lan, J. Xiao, J. Liu, M. Zhang, Y. Chen, Q. Zeng, Nanotechnology 27, 475709 (2016)

  6. 6.

    C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, J.-P. Simonato, Nano Res. 5, 427–433 (2012)

  7. 7.

    R. Gupta, G.U. Kulkarni, A.C.S. Appl, Mater. Interfaces 5, 730–736 (2013)

  8. 8.

    J. Jin, J. Lee, S. Jeong, S. Yang, J.-H. Ko, H.-G. Im, S.-W. Baek, J.-Y. Lee, B.-S. Bae, Energy Environ. Sci. 6, 1811–1817 (2013)

  9. 9.

    A.Y. Kim, M.K. Kim, C. Hudaya, J.H. Park, D. Byun, J.C. Lim, J.K. Lee, Nanoscale 8, 3307–3313 (2016)

  10. 10.

    S. Wang, X. Zhang, W. Zhao, J. Nanomater. 2013, 1–6 (2013)

  11. 11.

    Y. Guo, C. Dun, J. Xu, J. Mu, P. Li, L. Gu, C. Hou, C.A. Hewitt, Q. Zhang, Y. Li, D.L. Carroll, H. Wang, Small 13, 1702645 (2017)

  12. 12.

    W. Ning, Z. Wang, P. Liu, D. Zhou, S. Yang, J. Wang, Q. Li, S. Fan, K. Jiang, Carbon 139, 1136–1143 (2018)

  13. 13.

    Y. Kim, H.R. Lee, T. Saito, Y. Nishi, Appl. Phys. Lett. 110, 153301 (2017)

  14. 14.

    P. Zhang, I. Wyman, J.W. Hu, S.D. Lin, Z.W. Zhong, Y.Y. Tu, Z.Z. Huang, Y.L. Wei, Mater Sci Eng B 223, 1–23 (2017)

  15. 15.

    J.S. Woo, J.T. Han, S. Jung, J.I. Jang, H.Y. Kim, H.J. Jeong, S.Y. Jeong, K.J. Baeg, G.W. Lee, Sci. Rep. 4, 4804 (2014)

  16. 16.

    T. Kim, Y.W. Kim, H.S. Lee, H. Kim, W.S. Yang, K.S. Suh, Adv. Funct. Mater. 23, 1250–1255 (2013)

  17. 17.

    X. Shi, W. Xu, W. Shen, G. Wang, R. Wang, X. Li, W. Song, J. Mater. Sci. 30, 2089–2095 (2018)

  18. 18.

    H.-G. Cheong, D.-W. Song, J.-W. Park, Microelectron. Eng. 146, 11–18 (2015)

  19. 19.

    Q.S. Xu, W.F. Shen, Q.J. Huang, Y. Yang, R.Q. Tan, K. Zhu, N. Dai, W.J. Song, J. Mater. Chem. C 2, 3750–3755 (2014)

  20. 20.

    S.J. Choi, S.J. Kim, J.S. Jang, J.H. Lee, I.D. Kim, Small 12, 5826–5835 (2016)

  21. 21.

    H.-G. Cheong, J.-H. Kim, J.-H. Song, U. Jeong, J.-W. Park, Thin Solid Films 589, 633–641 (2015)

  22. 22.

    F. Xu, W. Xu, B.X. Mao, W.F. Shen, Y. Yu, R.Q. Tan, W.J. Song, J. Colloid Interface Sci. 512, 208–218 (2018)

  23. 23.

    Y.-Y. Choi, K.-H. Choi, H. Lee, H. Lee, J.-W. Kang, H.-K. Kim, Sol. Energy Mater. Sol. Cells 95, 1615–1623 (2011)

  24. 24.

    G. Haacke, J. Appl. Phys. 47, 4086–4089 (1976)

  25. 25.

    Q.J. Huang, W.F. Shen, X.Z. Fang, G.F. Chen, Y. Yang, J.H. Huang, R.Q. Tan, W.J. Song, A.C.S. Appl, Mater. Interfaces 7, 4299–4305 (2015)

  26. 26.

    S. Ji, W. He, K. Wang, Y. Ran, C. Ye, Small 10, 4951–4960 (2014)

  27. 27.

    G.L. Wang, W. Xu, F. Xu, W.F. Shen, W.J. Song, Mater. Res. Express 4, 116405 (2017)

Download references

Acknowledgements

This work was financial supported by the Program for the Ningbo Municipal Science and Technology Innovative Research Team (2016B10005), Zhejiang Provincial Natural Science Foundation of China (LY19A020002), and National Natural Science Foundation of China (61774160).

Author information

Correspondence to Wei Xu or Ruiqin Tan or Weijie Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Cai, P., Xu, W. et al. Highly flexible and transparent film heaters based on colorless polyimide substrate with a GZO/AgNW/GZO sandwich structure. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03031-4

Download citation