Advertisement

Dielectric, optical, and multiferroic properties of Co-doped SrBi2Nb1.8Fe0.2O9 ceramics

  • Yu Shi
  • Yongping PuEmail author
  • Jingwei Li
  • Wen Wang
  • Ruike Shi
  • Mengdie Yang
  • Xu Guo
  • Xiaoying Wang
  • Jiamin Ji
  • Xin Peng
  • Qianwen Zhang
  • Linghua GuoEmail author
Article
  • 16 Downloads

Abstract

SrBi2Nb1.8−xCoxFe0.2O9 (SBCFN, x = 0, 0.1, 0.2, 0.3 and 0.4) ceramic samples were fabricated by traditional solid-state reaction. Structure was detected by XRD and SEM, which demonstrated that all samples showed pure orthorhombic Aurivillius structure and the plate-like grains were observed. The morphology gradually disappeared with Co ions doping. Relaxation peak in low-temperature region of Co-doped samples was discussed in dielectric spectra. Besides, the decrease in resistance induced by the motion of first ionized oxygen vacancies was revealed by fitted Arrhenius curves and supported by Correlated Barrier Hopping conduction model. The contribution of leakage current in P–E loops was observed. The optimum magnetic property was obtained when the molar ratio of Fe3+ and Co3+ is 1:1, which is attributed to introduction of double exchange interaction (Fe–O–Co). At the same time, the Eg was narrowed due to hybridization and lattice distortion, which was coincident with the result of resistance.

Notes

Acknowledgements

This work was financed by the National Natural Science Foundation of China (51872175) and the International Cooperation Projects of Shaanxi Province (2018KW-027).

References

  1. 1.
    SW Cheong M Mostovoy 2007 Multiferroics: a magnetic twist for ferroelectricity Nat Mater 6 13 20  https://doi.org/10.1038/nmat1804 CrossRefGoogle Scholar
  2. 2.
    R Ramesh NA Spaldin 2007 Multiferroics: progress and prospects in thin films Nat Mater 6 21 29  https://doi.org/10.1038/nmat1805 CrossRefGoogle Scholar
  3. 3.
    W Eerenstein N Mathur J Scott 2006 Multiferroic and Magnetoelectric Materials Nature 442 759 765  https://doi.org/10.1038/nature05023 CrossRefGoogle Scholar
  4. 4.
    J Wang J Neaton H Zhang V Nagarajan SB Ogale B Liu D Viehland V Vaithyanathan DG Schlom UV Waghmare NA Spaldim KM Rabe M Wuttig R Ramesh 2003 Epitaxial BiFeO3 multiferroic thin film heterostructures Science 14 1719 1722  https://doi.org/10.1126/science.1080615 CrossRefGoogle Scholar
  5. 5.
    T Nakajima Y Tokunaga V Kocsis Y Taguchi 2015 Uniaxial-stress control of spin-driven ferroelectricity in multiferroic Ba2CoGe2O7 Phys Rev Lett 114 067201  https://doi.org/10.1103/PhysRevLett.114.067201 CrossRefGoogle Scholar
  6. 6.
    T Aoyama K Yamauchi A Lyama S Picozzi K Shimizu T Kimura 2014 Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure Nat Commun 5 4927  https://doi.org/10.1038/ncomms5927 CrossRefGoogle Scholar
  7. 7.
    NA Hill 2000 Why are there so few magnetic ferroelectrics? J Phys Chem B 104 6694 6709  https://doi.org/10.1002/chin.200049237 CrossRefGoogle Scholar
  8. 8.
    J Chen Z Tang Y Bai S Zhao 2016 Multiferroic and magnetoelectric properties of BiFeO3/Bi4Ti3O12 bilayer composite films J Alloys and Compounds 675 257 265  https://doi.org/10.1016/j.jallcom.2016.03.119 CrossRefGoogle Scholar
  9. 9.
    J Chen Z Tang B Yang S Zhao 2018 High energy storage performances in lead-free BaBi3.9Pr0.1Ti4O15 relaxor ferroelectric films Appl Phys Lett 113 153904  https://doi.org/10.1063/1.5054924 CrossRefGoogle Scholar
  10. 10.
    J Chen Z Tang S Zhao 2018 Giant negative and positive electrocaloric effects coexisting in lead-free Na0.5Bi4.5Ti4O15 films over a broad temperature range Physica Status Solidi-Rapid Research Letters 12 1700443  https://doi.org/10.1002/pssr.201700443 CrossRefGoogle Scholar
  11. 11.
    D Lebeugle D Colson A Forget M Viret P Bonville JF Marucco S Fusil 2007 Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals Phys Rev B 76 024116  https://doi.org/10.1103/PhysRevB.76.024116 CrossRefGoogle Scholar
  12. 12.
    H Sun Y Wu X Xie Y Lu T Yao J Zhong X Chen 2018 Ferroelectric, magnetic, and optical properties of Aurivillius compound Bi5FeTi2.5Co0.5O15 Journal of Materiomics 4 353 359  https://doi.org/10.1016/j.jmat.2018.09.005 CrossRefGoogle Scholar
  13. 13.
    X Li Z Chen L Sheng L Li W Bai F Wen P Zheng W Wu L Zheng Y Zhang 2019 Remarkable piezoelectric activity and high electrical resistivity in Cu/Nb co-doped Bi4Ti3O12 high temperature piezoelectric ceramics J Eur Ceram Soc 39 2050 2057  https://doi.org/10.1016/j.jeurceramsoc.2019.01.042 CrossRefGoogle Scholar
  14. 14.
    X Mao W Wang X Chen Y Lu 2009 Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics Appl Phys Lett 95 082901  https://doi.org/10.1063/1.3213344 CrossRefGoogle Scholar
  15. 15.
    R Ti X Lu J He F Huang H Wu F Mei M Zhou Y Li T Xu J Zhu 2015 Multiferroic properties and magnetoelectric coupling in Fe/Co co-doped Bi3.25La0.75Ti3O12 ceramics Journal of Materials Chemistry C 3 11868 11873  https://doi.org/10.1039/c5tc02399h CrossRefGoogle Scholar
  16. 16.
    Z. Li, K. Tao, J. Ma, Z. Gao, V. kocal, C. Jiang, G. Viola, H. Zhang, A. Mahajan, J. Cao, M. Cain, I. Abrahams, C. Nan, C. Jia, H. Yan, Bi3.25La0.75Ti2.5Nb0.25(Fe0.5Co0.5)025O12, a single phase room temperature multiferroic, Journal of Materials Chemistry C, 6 (2018) 2733–2740. DOI: 10.1039/C8TC00161HCrossRefGoogle Scholar
  17. 17.
    S Sun Y Huang G Wang J Wang Z Fu R Peng R Knize Y Lu 2014 Nanoscale structural modulation and enhanced room-temperature multiferroic properties Nanoscale 6 13494  https://doi.org/10.1039/c4nr03542a CrossRefGoogle Scholar
  18. 18.
    W Gu X Li S Sun L Zhu Z Fu Y Lu 2018 Magnetocrystalline anisotropy in the Co/Fe codoped Aurivillius oxide with different perovskite layer number J Am Ceram Soc 101 1 11  https://doi.org/10.1111/jace.15424 CrossRefGoogle Scholar
  19. 19.
    Z Yao H Li M Ma R Chu Z Xu J Hao G Li 2015 Preparation and electrical properties of SrBi2−xSmxNb2O9 lead-free piezoelectric ceramics J Mater Sci: Mater Electron 27 2114 2119  https://doi.org/10.1007/s10854-015-3999-7 CrossRefGoogle Scholar
  20. 20.
    Y Shi Y Pu Q Zhang J Li L Guo 2018 Dielectric and multiferroic properties of two-layered SrBi2Nb2-xFexO9 Aurivillius compounds Ceram Int 44 S61 S64  https://doi.org/10.1016/j.ceramint.2018.08.251 CrossRefGoogle Scholar
  21. 21.
    Z. Yao, R. Chu, Z. Xu, J. Hao, De. Wei, R. Cheng, G. Li, Preparation and electrical properties of MoO3-modified SrBi2Nb2O9-based lead-free piezoelectric ceramics, Journal of Alloys and Compounds, 666 (2016) 10–14. DOI: 10.1016/j.jallcom.2016.01.021CrossRefGoogle Scholar
  22. 22.
    P Banerjee A Franco 2017 Substitution-induced near phase transition with Maxwell-Wagner polarization in SrBi2(Nb1−xAx)2O9 ceramics[A=W, Mo and x=0, 0.025], Phys Status Solidi A 214 1700067  https://doi.org/10.1002/pssa.201700067 CrossRefGoogle Scholar
  23. 23.
    SW Hwang TH Noh IS Cho 2019 Optical properties, electronic structures, and photocatalytic performances of bandgap-tailored SrBi2Nb2−xVxO9 compounds Catalysts 9 393  https://doi.org/10.3390/catal9050393 CrossRefGoogle Scholar
  24. 24.
    JA Horn SC Zhang U Selvaraj GL Messing 1999 Templated grain growth of textured bismuth titanate J Am Ceram Soc 82 921 926  https://doi.org/10.1111/j.1151-2916.1999.tb01854.x CrossRefGoogle Scholar
  25. 25.
    X Zeng F Cao Z Peng X Xing 2018 Crystal structure and electrical properties of (Li, Ce, Nd)-multidoped CaBi2Nb2O9 high temperature ceramics Ceram Int 44 3069 3076  https://doi.org/10.1016/j.ceramint.2017.11.069 CrossRefGoogle Scholar
  26. 26.
    PR Das B Pati BC Sutar R Choudhury 2012 Study of structural and electrical properties of a new type of complex tungsten bronze electroceramics: Li2Pb2Y2W2Ti4V4O30 J Modern Phys 03 870 880  https://doi.org/10.4236/jmp.2012.38114 CrossRefGoogle Scholar
  27. 27.
    P. Nayak, A. K. Singh, Correlation between orthorhombic distortion with relaxation and Conduction mechanism of Gd3+ modified SrBi4Ti4O15 ceramics, 44 (2018) 22840–22849. DOI: 10.1016/j.ceramint.2018.09.076CrossRefGoogle Scholar
  28. 28.
    A Srinivas MM Kuamr SV Suryanarayana T Bhimasankaram 1999 Investigation of dielectric and magnetic nature of Bi7Fe3Ti3O21 Mater Res Bull 34 989 996  https://doi.org/10.1016/s0025-5408(99)00093-8 CrossRefGoogle Scholar
  29. 29.
    S Sun C Liu G Wang Z Chen T Chen R Peng Y Lu A Belik 2016 Structural and physical properties of mixed-layer Aurivillius-type multiferroics J Am Ceram Soc 99 3033 3038  https://doi.org/10.1111/jace.14312 CrossRefGoogle Scholar
  30. 30.
    B. Yuan, J. Yang, J. Chen, X. Z. Zuo, L. H. Yin, X. W. Tang, X. B. Zhu, J. M. Dai, W. H. Song, Y. P. Sun, Magnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3−2xNbxCoxO18 (0 ≤ x ≤ 0.4), Applied Physics Letters, 104 (2014) 062413. DOI: 10.1063/1.4865422CrossRefGoogle Scholar
  31. 31.
    D Paiva M Silva R Oliveira de A Rodrigues L Fechine A Sombra P Fechine 2019 Magneto-dielectric composite based on Y3Fe5O12-CaTiO3 for radio frequency and microwave applications J Alloy Compd 783 652 661  https://doi.org/10.1016/j.jallcom.2018.12.366 CrossRefGoogle Scholar
  32. 32.
    C Cramer S Brunklaus E Ratai Y Gao 2003 New mixed alkali effect in the ac conductivity of ion-conducting glasses Phys Rev Lett 91 266601  https://doi.org/10.1103/physrevlett.91.266601 CrossRefGoogle Scholar
  33. 33.
    C. Rayssi, F. Rhouma, J. Dhahri, K. Khirouni, M. Zaidi, H. Belmabrouk, Structural, electric and dielectric properties of Ca0.85Er0.1Ti1−xCo4x/3O3(0 ≤ x ≤ 0.1), Applied Physics A, 123 (2017) 778. DOI: 10.1007/s00339–017–1365–8Google Scholar
  34. 34.
    A. Bettaibi, R. Jemai, M. A. Wederni, R. M'nassri, M. Barbouche, H. Rahmouni, K. Khirouni, Effect of erbium concentration on the structural, optical and electrical properties of a Bi4Ti3O12 system, 7 (2017) 222578. DOI: 10.1039/c6ra27906fCrossRefGoogle Scholar
  35. 35.
    AK Jonscher 1999 Dielectric relaxation in solids J Phys D-Applied Phys 32 R57 R70  https://doi.org/10.1088/0022-3727/32/14/201 CrossRefGoogle Scholar
  36. 36.
    AK Jonscher 1977 The ‘universal’ dielectric response Nature 67 673 679  https://doi.org/10.1038/267673a0 CrossRefGoogle Scholar
  37. 37.
    SR Elliott 1978 Temperature dependence of a.c. conductivity of chalcogenide glasses Philosophical Magazine Part B 37 553 560  https://doi.org/10.1080/01418637808226448 CrossRefGoogle Scholar
  38. 38.
    CB Mohamed K Karoui S Saidi K Guidara A Rhaiem 2014 Electrical properties, phase transitions and conduction mechanisms of the [(C2H5)NH3]2CdCl4 compound Phys B 451 87 95  https://doi.org/10.1016/j.physb.2014.06.006 CrossRefGoogle Scholar
  39. 39.
    R Thomas VK Varadan S Komarneni DC Dube 2001 Diffuse phase transitions, electrical conduction, and low temperature dielectric properties of sol–gel derived ferroelectric barium titanate thin films J Appl Phys 90 1480  https://doi.org/10.1063/1.1367318 CrossRefGoogle Scholar
  40. 40.
    MA Rafiq QK Muhammad S Nasir U Amin A Maqbool Z Ahmad 2018 Structure, infra-red, dielectric properties and conduction mechanism of Ti and Cu-Ti co-doped bismuth ferrite (BiFeO3): a comparison study Appl Phys A 124 748  https://doi.org/10.1007/s00339-018-2170-8 CrossRefGoogle Scholar
  41. 41.
    HS Shulman M Testorf D Damjanovic N Setter 1996 Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate J Am Ceram Soc 799 3124 3128  https://doi.org/10.1002/chin.199716014 CrossRefGoogle Scholar
  42. 42.
    I Burn S Neirman 1982 Dielectric-properties of donor-doped polycrystalline SrTiO3 J Mater Sci 17 3510 3524  https://doi.org/10.1007/BF00752196 CrossRefGoogle Scholar
  43. 43.
    A Chen Y Zhi LE Cross 2000 Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3 Physical Review B 62 228 236  https://doi.org/10.1103/PhysRevB.62.228 CrossRefGoogle Scholar
  44. 44.
    F Rehman H Jin C Nihurleru A Bukhtiar Y Zhao J Li 2016 Structure, magnetic and dielectric properties of Bi4Nd0.5Gd0.5Ti3FeO15 ceramcis Ceram Int 42 2806 2812  https://doi.org/10.1016/j.ceramint.2015.11.013 CrossRefGoogle Scholar
  45. 45.
    AE Paladino 1965 Oxidation kinetics of single-ccrystal SrTiO3 J Am Ceram Soc 48 476 478  https://doi.org/10.1111/j.1151-2916.1965.tb14803.x CrossRefGoogle Scholar
  46. 46.
    X Xie Z Zhou T Wang R Liang X Dong 2018 High temperature impedance properties and conduction mechanism of W6+-doped CaBi4Ti4O15 Aurivillius piezoceramics J Appl Phys 124 204101  https://doi.org/10.1063/1.5053741 CrossRefGoogle Scholar
  47. 47.
    S. Bouzidi, A. Hassen, J. Dhahri, K. Khirouni, Structural and dielectric properties of BaTi0.5(Co0.3Mo0.17)O3 perovskite ceramic, Journal of Alloys and Compounds, 781 (2019) 936–944. DOI: 10.1016/j.jallcom.2018.11.026CrossRefGoogle Scholar
  48. 48.
    J Wu J Wang 2010 Ferroelectric and impedance behavior of La- and Ti-Codoped BiFeO3 thin films J Am Ceram Soc 93 2795 2803  https://doi.org/10.1111/j.1551-2916.2010.03816.x CrossRefGoogle Scholar
  49. 49.
    Y Shu Q Ma Z Ding L Cao X Chen F Yang X Zeng 2019 Multiferroic behaviors of Co-doped Bi4NdTi3FeO15 ceramics Phys Lett A 383 911 914  https://doi.org/10.1016/j.physleta.2018.12.031 CrossRefGoogle Scholar
  50. 50.
    L Jin F Li S Zhang DJ Green 2014 Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures J Am Ceram Soc 97 1 27  https://doi.org/10.1111/jace.12773 CrossRefGoogle Scholar
  51. 51.
    S Liu S Yan H Luo L Yao Z Hu S Huang L Deng 2017 Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics J Mater Sci 53 1014 1023  https://doi.org/10.1007/s10853-017-1604-6 CrossRefGoogle Scholar
  52. 52.
    S Sun G Wang Y Huang J Wang R Peng Y Lu 2014 Structural transformation and multiferroic properties in Gd-doped Bi7Fe3Ti3O21 ceramics RSC Advances 4 30440  https://doi.org/10.1039/c4ra04945d CrossRefGoogle Scholar
  53. 53.
    HS Kim L Bi GF Dionne CA Ross 2008 Magnetic and magneto-optical properties of Fe-doped SrTiO3 films Appl Phys Lett 93 092506  https://doi.org/10.1063/1.2977963 CrossRefGoogle Scholar
  54. 54.
    X Chen C Wei J Xiao Y Xue X Zeng F Yang P Li Y He 2013 Room temperature multiferroic properties and magnetocapacitance effect of modified ferroelectric Bi4Ti3O12 ceramic J Phys D Appl Phys 46 425001  https://doi.org/10.1088/0022-3727/46/42/425001 CrossRefGoogle Scholar
  55. 55.
    X Mao H Sun W Wang Y Lu X Chen 2012 Effects of Co-substitutes on multiferroic properties of Bi5FeTi3O15 ceramics Solid State Commun 152 483 487  https://doi.org/10.1016/j.ssc.2012.01.001 CrossRefGoogle Scholar
  56. 56.
    MQ Cai JC Liu GW Yang YL Cao X Tan XY Chen YG Wang LL Wang WY Hu 2007 First-principles study of structural, electronic, and multiferroic properties in BiCoO3 J Chem Phys 126 154708  https://doi.org/10.1063/1.2483798 CrossRefGoogle Scholar
  57. 57.
    Y Wu T Yao Y Lu B Zou X Mao F Huang H Sun X Chen 2017 Magnetic, dielectric, and magnetodielectric properties of Bi-layered perovskite Bi425Gd 0.75Fe0.5Co0.5Ti3O15 J Mater Sci 52 7360 7368  https://doi.org/10.1007/s10853-017-0971-3 CrossRefGoogle Scholar
  58. 58.
    KS Kim 1975 X-ray-photoelectron spectroscopic studies of the electronic structure of CoO Phys Rev B 11 2177 2185  https://doi.org/10.1103/PhysRevB.11.2177 CrossRefGoogle Scholar
  59. 59.
    S Ma X Cheng T Ali Z Ma Z Xu R Chu 2019 Influence of tantalum on mechanical, ferroelectric and dielectric properties of Bi-excess Bi3.25La0.75Ti3O12 thin film Appl Surf Sci 463 1141 1147  https://doi.org/10.1016/j.apsusc.2018.09.040 CrossRefGoogle Scholar
  60. 60.
    DO Charkin SM Kazakov SN Kalmykov AV Gorbachev AN Kuznetsov AY Zakharov YA Teterin KI Maslakov AY Teterin KE Ivanov 2016 Synthesis and XPS studies of uranium-bearing Aurivillius-derived layered perovskites J Alloy Compd 677 271 280  https://doi.org/10.1016/j.jallcom.2016.03.230 CrossRefGoogle Scholar
  61. 61.
    KC Verma D Singh S Kumar RK Kotnala 2017 Multiferroic effects in MFe2O4/BaTiO3 (M = Mn Co, Ni, Zn) nanocomposites J Alloy Compd 709 344 355  https://doi.org/10.1016/j.jallcom.2017.03.145 CrossRefGoogle Scholar
  62. 62.
    J Ye X Sun Z Wu J Liu Y An 2018 Evidence of the oxygen vacancies-induced room temperature ferromagnetism in multiferroic Co-doped LiNbO3 films J Alloy Compd 768 750 755  https://doi.org/10.1016/j.jallcom.2018.07.302 CrossRefGoogle Scholar
  63. 63.
    WE Morgan WJ Stec JR Van 1973 Inner-orbital binding-energy shifts of antimony and bismuth compounds Inorg Chem 12 953 959  https://doi.org/10.1021/ic50122a054 CrossRefGoogle Scholar
  64. 64.
    J Tauc R Grigorovici A Vancu 1966 Optical properties and electronic structure of amorphous germanium Physica Status Solidi 15 627  https://doi.org/10.1002/pssb.19660150224 CrossRefGoogle Scholar
  65. 65.
    T Wang H Deng X Meng H Cao W Zhou P Shen Y Zhang P Yang J Chu 2017 Tunable polarization and magnetization at room-temperature in narrow bandgap Aurivillius Bi6Fe2-xCox/2Nix/2Ti3O18 Ceramics Internation 43 8792 8799  https://doi.org/10.1016/j.ceramint.2017.04.010 CrossRefGoogle Scholar
  66. 66.
    P Banerjeea A Franco 2019 Role of higher valent substituent on the dielectric and optical properties of Sr0.8Bi2.2Nb2O9 ceramics Mater Chem Phys 225 213 218  https://doi.org/10.1016/j.matchemphys.2018.12.075 CrossRefGoogle Scholar
  67. 67.
    X Zuo S Zhu J Bai E He Z Hui P Zhang D Song W Song J Yang X Zhu J Dai 2019 Enhanced multiferroicity and narrow band gap in B-site Co-doped Aurivillius Bi5FeTi3O15 Ceram Int 45 137 143  https://doi.org/10.1016/j.ceramint.2018.09.144 CrossRefGoogle Scholar
  68. 68.
    H. Sun, Y. Wu, X. Xie, Y. Lu, T. Yao, J. Zhong, X. Chen, Ferroelectric, magnetic, and optical properties of Aurivillius compound Bi5FeTi2.5Co0.5O15, Journal of Materiomics, 4 (2018) 353–359. DOI: 10.1016/j.jmat.2018.09.005CrossRefGoogle Scholar
  69. 69.
    X Liu L Xu Y Huang C Qin L Qin H Seo 2017 Improved photochemical properties of Aurivillius Bi5Ti3FeO15 with partial substitution of Ti4+ with Fe3+ Ceram Int 43 12372 12380  https://doi.org/10.1016/j.ceramint.2017.06.103 CrossRefGoogle Scholar
  70. 70.
    G Chen W Bai L Sun J Wu Q Ren W Xu J Yang X Meng X Tang C Duan J Chu 2013 Processing optimization and sintering time dependent magnetic and optical behaviors of Aurivillius Bi5Ti3FeO15 ceramics J Appl Phys 113 034901  https://doi.org/10.1063/1.4775800 CrossRefGoogle Scholar
  71. 71.
    Z Duan K Jiang L Xu Y Li Z Hu J Chu 2014 Intrinsic relationship between electronic structures and phase transition of SrBi2-xNdxNb2O9 ceramics from ultraviolet ellipsometry at elevated temperatures J Appl Phys 115 054107  https://doi.org/10.1063/1.4864715 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi’anPeople’s Republic of China
  2. 2.College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi’anPeople’s Republic of China

Personalised recommendations