Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Metal oxide nanofluids in electronic cooling: a review

Abstract

Loop heat pipe (LHP) has gained significant interest, particularly in the field of cooling electronics, and has been considered as an efficient heat transfer device in today’s electronic technologies. LHP is preferred over conventional heat pipes (HP) due to the high efficiency, high heat flux capability, ability to transfer energy over long distances and ability to operate over a range of environments. Brief comparisons between HP and LHP for electronic cooling are discussed. For the past 10 years, numerous studies have reported on the synthesis of nanofluids used in LHP for cooling electronics. Nanofluids have been widely used in electronic applications due to their superior heat transfer and thermal properties. The nanofluid fabrication, stability and surfactants are reviewed. Recent works on metal oxide nanofluids and properties that influence the thermophysical properties of nanofluids, such as thermal conductivity, viscosity and surface tension, are also reported. Another intention behind this review is to explain the challenges of metal oxide nanofluids in electronics cooling.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    G. Colango, E. Favale, M. Milanese, A. de Risi, D. Laforgia, Appl. Therm. Eng. 127, 421–435 (2017)

  2. 2.

    S.M.S. Murshed, Introductory Chapter: Electronics Cooling-An Overview. Electronics Cooling (IntechOpen, 2016)

  3. 3.

    M. Bahiraei, S. Heshmatian, Energy Convers. Manag. 172, 438–456 (2018)

  4. 4.

    A.A. Almubarak, Int. J. Eng. Res. Appl. 7, 52–57 (2017)

  5. 5.

    U.S. Department of Defense, Reliability Predicition of Electronic Equipment (Springfield, VA, 1974)

  6. 6.

    S.M.S. Murshed, C.A.N. de Castro, Renew. Sustain. Energy Rev. 78, 821–833 (2017)

  7. 7.

    M.D. Shende, A. Mahalle, IOSR, J. Mech. Civ. Eng. 5, 56–61 (2013)

  8. 8.

    W.A. Scott, Cooling of Electronic Equipment (Wiley, New York, 1974), p. 295

  9. 9.

    C.C.M. de Oliveira, M.C. Gutierrez, V.S. Junior, Food Sci. Technol. 34, 416–421 (2014)

  10. 10.

    D. Wen, G. Lin, S. Vafaei, K. Zhang, Particuology 7, 141–150 (2009)

  11. 11.

    N. Ali, J.A. Teixeira, A. Addali, J. Nanomater. (2019). https://doi.org/10.1155/2019/3930572

  12. 12.

    K.S. Suganthi, K.S. Rajan, Int. J. Heat Mass Transf. 55, 7969–7980 (2012)

  13. 13.

    K.S. Suganthi, K.S. Rajan, Renew Sustain. Energy Rev. 76, 226–255 (2017)

  14. 14.

    M. Gupta, V. Singh, R. Kumar, Z. Said, Renew. Sustain. Energy Rev. 74, 638–670 (2017)

  15. 15.

    V. Sridhara, L.N. Satapathy, Nanoscale Res. Lett. 6, 456 (2011)

  16. 16.

    H. Jouhara, A. Chauhan, T. Nannou, S. Almahmoud, B. Delpech, L.C. Wrobel, Energy 128, 729–754 (2017)

  17. 17.

    W. Srimuang, P. Amatachaya, Renew. Sustain. Energy Rev. 16, 4303–4315 (2012)

  18. 18.

    Y.F. Maydanik, M.A. Chernysheva, V.G. Pastukhov, Appl. Therm. Eng. 67, 294–307 (2014)

  19. 19.

    Y.F. Maydanik, Appl. Therm. Eng. 25, 635–657 (2005)

  20. 20.

    D. Wang, Z. Liu, S. He, J. Yang, W. Liu, Int. J. Heat Mass Transf. 89, 33–41 (2015)

  21. 21.

    C.W. Chan, E. Siqueiros, J.L. Chin, M. Royapoor, A.P. Roskilly, Renew. Sustain. Energy Rev. 50, 615–627 (2015)

  22. 22.

    S. Mohapatra, 2006. An Overview of Liquid Coolants for Electronics Cooling. Electronics Cooling (IntechOpen, 2016), pp. 1–6

  23. 23.

    Ashrae, ASHRAE Handbook Fundamentals (Amer Soc of Heating, Refrigerating and AC Engineers, 2001)

  24. 24.

    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 110, 2574 (2010)

  25. 25.

    I. Khan, K. Saeed, I. Khan, Arab. J. Chem. 12, 908–931 (2017)

  26. 26.

    H.A. Mohammed, A.A. Al-Aswadi, N.H. Shuaib, R. Saidur, Renew. Sustain. Energy Rev. 15, 2921–2939 (2011)

  27. 27.

    U.S. Shenoy, A.N. Shetty, Front Mater. Sci. 12, 74–82 (2018)

  28. 28.

    L. Kong, J. Sun, Y. Bao, RSC Adv. 7, 12599–12609 (2017)

  29. 29.

    S. Mukherjee, P.C. Mishra, P. Chaudhuri, ChemBioEng Rev. 5, 312–333 (2018)

  30. 30.

    S. Harkirat, D. Gangacharyulu, Part Sci. Technol. 5, 1–8 (2016)

  31. 31.

    M.A. Sabiha, R.M. Mostafizur, R. Saidur, M. Saad, Int. J. Heat Mass Transf. 93, 862–871 (2016)

  32. 32.

    D.H. Fontes, G. Ribatski, E.P.B. Filho, Diamond Relat. Mater. 58, 115–121 (2015)

  33. 33.

    I.S. Umer, P. Rajashekhar, N. Marneni, S. Lim, Energy Convers. Manag. 142, 215–229 (2017)

  34. 34.

    L. Liu, M. Wang, Y. Liu, Asia-Pacific Energy Equipment Engineering Research Conference, Zhuhai (2015)

  35. 35.

    Y. Hwang, J.K. Lee, J.K. Lee, Y.M. Jeong, S. Cheong, Y.C. Ahn, S.H. Kim, Powder Technol 186(2), 145–153 (2008)

  36. 36.

    I.M. Mahbubul, R. Saidur, M.A. Amalina, M.E. Niza, Int. Commun. Heat Mass Transf. 76, 33–40 (2016)

  37. 37.

    S. Lee, S.S. Choi, S.A. Li, J.A. Eastman, J. Heat Transf. 121, 280–289 (1999)

  38. 38.

    D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Curr. Appl. Phys. 9, 131–139 (2009)

  39. 39.

    H. Chang, Y.C. Wu, X.Q. Chen, M.J. Kao, Taipei Univ. Technol. J. 5, 201–208 (2007)

  40. 40.

    H. Chang, C.S. Jwo, P.S. Fan, S.H. Pai, Int. J. Adv. Manuf. Technol. 34, 300–306 (2007)

  41. 41.

    R. Hunter, Zeta Potential in Colloid Science: Principle and Applications (Academic Press, Waltham, 1981)

  42. 42.

    L. Vandsburger, Synthesis and Covalent Surface Modification of Carbon Nanotubes for Preparation of Stabilized Nanofluid Suspensions, MSc. Thesis, McGill University, Montreal 2009

  43. 43.

    H. Yu, S. Hermann, S.E. Schulz, T. Gessner, Z. Dong, W.J. Li, Chem. Phys. 408, 11–16 (2012)

  44. 44.

    E. Tombácz, D. Bica, A. Hadjú, E. Illés, A. Majzik, L. Vékás, J. Phys. Condens. Matter 20, 204103 (2008)

  45. 45.

    M.A. Khairul, K. Shah, E. Doroodchi, R. Azizian, B. Moghtaderi, Int. J. Heat Mass Transf. 98, 778–787 (2016)

  46. 46.

    J. Huang, X. Wang, Q. Long, X. Wen, Y. Zhou, L. Li, in 2009 Symp. On Photonics and Optoelectronics, Institute of Electrical and Electronics Engineers, Pisctaway Township, 1–4 (2009)

  47. 47.

    G. Xia, H. Jiang, R. Liu, Y. Zhai, Int. J. Therm. Sci. 84, 118–124 (2014)

  48. 48.

    S. Liufu, H. Xiao, Y. Li, J. Colloid Interface Sci. 281, 155–163 (2005)

  49. 49.

    J.J. Wang, R.T. Zheng, J.W. Gao, G. Chen, Nano Today 7, 124–136 (2012)

  50. 50.

    M.J. Assael, I.N. Metaxa, J. Arvanitidis, D. Christofilos, C. Lioutas, Int. J. Thermophys. 26, 646–664 (2005)

  51. 51.

    A. Nasiri, M. Shariaty-Niasar, A. Rashidi, A. Amrollahi, R. Khodafarin, Exp. Therm. Fluid Sci. 35, 717–723 (2011)

  52. 52.

    N. Parametthanuwat, S. Bhuwakietkumjohn, Y. Rittidech, T. Ding, Int. J. Heat Fluid Flow 56, 80–90 (2015)

  53. 53.

    X.Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1–19 (2007)

  54. 54.

    S. Wu, D. Zhu, X. Li, H. Li, J. Lei, Thermochim. Acta 483, 73–77 (2009)

  55. 55.

    D. Wu, H. Zhu, L. Wang, L. Liu, Curr. Nanosci. 5, 103–112 (2009)

  56. 56.

    X.Q. Wang, A.S. Mujumdar, Braz. J. Chem. Eng. 25, 631–648 (2008)

  57. 57.

    P. Gunnasegaran, M.Z. Abdullah, N.H. Shuaib, Int. Commun. Heat Mass 47, 82–91 (2013)

  58. 58.

    M.A.B. Harun, P. Gunnasegaran, N.A.C. Sidik, J. Adv. Res. Des. 52, 13–27 (2019)

  59. 59.

    R.B. Ganvir, P.V. Walke, V.M. Kriplani, Renew. Sustain. Energy Rev. 75, 451–460 (2017)

  60. 60.

    M.M. Tawfik, Renew. Sustain. Energy Rev. 75, 1239–1253 (2017)

  61. 61.

    M. Chandrasekar, S. Suresh, A.C. Bose, Exp. Therm. Fluid Sci. 34, 210–216 (2010)

  62. 62.

    S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Colloids Surf. A 388, 41–48 (2011)

  63. 63.

    W. Duangthongsuk, S. Wongwises, Exp. Therm. Fluid Sci. 33, 706–714 (2009)

  64. 64.

    F.S. Javadi, S. Sadeghipour, R. Saidur, G. BoroumandJazi, B. Rahmati, M.M. Elias, M.R. Sohel, Int. Commun. Heat Mass Transf. 44, 58–63 (2013)

  65. 65.

    T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, Appl. Therm. Eng. 30, 2213–2218 (2010)

  66. 66.

    H.E. Patel, S.K. Das, T. Sundararajan, A.S. Nair, B. George, T. Pradeep, Appl. Phys. Lett. 83, 2931–2933 (2003)

  67. 67.

    W. Duangthongsuk, S. Wongwises, Int. J. Heat Mass Transf. 53, 334–344 (2010)

  68. 68.

    L.S. Sundar, M.K. Singh, A. Sousa, Int. Commun. Heat Mass Transf. 44, 7–14 (2013)

  69. 69.

    Y. Vermahmoudi, S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Naraki, Eur. J. Mech. B 44, 32–41 (2014)

  70. 70.

    A.M. Hussein, R.A. Bakar, K. Kadirgama, Case Stud. Therm. Eng. 2, 50–61 (2014)

  71. 71.

    L.C. Yuan, W.J. Chang, C.T. Chieh, Appl. Energy 88, 4527–4533 (2011)

  72. 72.

    S.K. Das, N. Putra, W. Roetzel, Int. J. Heat Mass Transf. 46, 851–862 (2003)

  73. 73.

    Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Int. J. Heat Mass Transf. 50, 2272–2281 (2007)

  74. 74.

    G.M.J. Pastoriza, C. Casanova, J.L. Legido, M.M. Piñeiro, Fluid Phase Equilib. 300, 188–196 (2011)

  75. 75.

    P.K. Namburu, D.P. Kulkarni, A. Dandekar, D.K. Das, Micro. Nano Lett. 2, 67–71 (2007)

  76. 76.

    M. Ghanbarpour, E.B. Haghigi, R. Khodabandeh, Exp. Therm. Fluid Sci. 53, 227–235 (2014)

  77. 77.

    S.C. Sandesh, S.K. Sahu, J. Nanotechnol. Eng. Med. 5, 1–6 (2014)

  78. 78.

    C.T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, Int. J. Therm. Sci. 47, 103–111 (2008)

  79. 79.

    S. Halelfadl, T. Maré, P. Estellé, Exp. Therm. Fluid Sci. 53, 104–110 (2014)

  80. 80.

    P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Int. J. Therm. Sci. 48, 290–302 (2009)

  81. 81.

    M.N. Pantzali, G. Kanaris, K.D. Antoniadis, A.A. Mouza, S.V. Paras, Int. J. Heat Fluid Flow 30, 691–699 (2009)

  82. 82.

    M.N. Pantzali, A.A. Mouza, S.V. Paras, Chem. Eng. Sci. 64, 3290–3300 (2009)

  83. 83.

    Y.J. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee, B.C. Ku, S.P. Jang, Thermochim. Acta 455, 70–74 (2007)

  84. 84.

    E.B. Haghighi, N. Nikkam, M. Saleemi, M. Behi, S.A. Mirmohammadi, B. Palm, Meas. Sci. Technol. 24, 105301 (2013)

  85. 85.

    V. Srinivas, C.V. Moorthy, V. Dedeepya, P.V. Manikanta, V. Satish, Heat Mass Transf. 52, 701–712 (2016)

  86. 86.

    W. Yu, H. Xie, J. Nanomater. 2012, 1–17 (2012)

  87. 87.

    E. Tang, G. Cheng, X. Ma, X. Pang, Q. Zhao, Appl. Surf. Sci. 252, 5227–5232 (2006)

  88. 88.

    L. Yang, Y. Hu, Nanoscale Res. Lett. 12, 446 (2017)

  89. 89.

    C. Qi, C. Li, G. Wang, Nanoscale Res. Lett. 12, 516 (2017)

  90. 90.

    A.R. Sajadi, M.H. Kazemi, Int. Commun. Heat Mass 38, 1474–1478 (2011)

  91. 91.

    S. Fotowat, S. Askar, M. Ismail, A. Fartaj, Sustain. Energy Technol. 24, 39–44 (2017)

  92. 92.

    R. Bubbico, G.P. Celata, F. D’Annibale, B. Mazzarotta, C. Menale, Chem. Eng. Res. Des. 104, 605–614 (2015)

  93. 93.

    W. Rashmi, A.F. Ismail, M. Khalid, A. Anuar, T. Yusaf, J. Mater. Sci. 49, 4544–4551 (2014)

  94. 94.

    J. Sarkar, Renew. Sustain. Energy Rev. 15, 3271–3277 (2011)

  95. 95.

    V.Y. Rudyak, A.V. Minakov, Eur. Phys. J. E 41, 15 (2018)

  96. 96.

    V.Y. Rudyak, A.A. Belkin, V.V. Egorov, Tech. Phys. 54, 1102 (2009)

  97. 97.

    K. Kleinstreuer, F. Yu, Nanoscale Res. Lett. 6, 1 (2011)

  98. 98.

    V.Y. Rudyak, S.L. Krasnolutskii, Tech. Phys. 60, 798 (2015)

  99. 99.

    R. Dharmalingama, K.K. Sivagnanaprabhu, B.S. Kumar, R. Thirumalai, Procedia Eng. 97, 1434–1441 (2014)

  100. 100.

    P. Gunnasegaran, M.Z. Abdullah, M.Z. Yusoff, Procedia Mater. Sci. 5, 137–146 (2014)

  101. 101.

    N. Putra, R. Saleh, W.N. Septiadi, A. Okta, Z. Hamid, Int. J. Therm. Sci. 76, 128–136 (2014)

  102. 102.

    M. Moraveji, S. Keshavarz, Razvarz. Int. Commun. Heat Mass 39, 1444–1448 (2012)

  103. 103.

    E.N. Stephen, L.G. Asirvatham, R. Kandasamy, B. Solomon, G.S. Kondru, J. Therm. Anal. Calorim. 136, 211–222 (2019)

  104. 104.

    N. Putra, W.N. Septiadi, R. Saleh, R.A. Koestoer, S.P. Prakoso, Adv. Mater. Res. 875, 356–361 (2014)

  105. 105.

    X.W. Wang, Z.P. Wan, Y. Tang, Heat Mass Transf. 49, 1001–1007 (2013)

  106. 106.

    P. Gunnasegaran, M.Z. Abdullah, M.Z. Yusoff, Case Stud. Therm. Eng. 6, 238–250 (2015)

Download references

Acknowledgements

The authors acknowledge the financial support from the Ministry of Education Malaysia through Fundamental Research Grant Scheme (FRGS; Grant No. 203.PAERO.6071399) and Universiti Sains Malaysia.

Author information

Correspondence to M. Hussin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saidina, D.S., Abdullah, M.Z. & Hussin, M. Metal oxide nanofluids in electronic cooling: a review. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03020-7

Download citation