Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina

  • 22 Accesses

Abstract

Rapid heat dissipation is the pain point of modern miniaturized electronic equipment and components. High-power and high-efficiency operation puts forward higher requirements on the heat transfer capability of thermal interface materials (TIM). In this work, taking advantage of synergistic effect between thermally conductive fillers graphene and alumina (Al2O3), thermal grease-based TIM was prepared. Secondly, the effects of temperature and pressure on the thermal interface resistance were studied. Lastly, coating thickness and thermal stability of thermal grease-based TIM were tested. These results show thermal conductivity of composite as high as 4.38 W/(m K). The interface thermal resistance is as low as 0.243 °C cm2/W (80 °C, 60 psi) in case that the temperature and pressure strain capability within a certain range are subsequently considerable. Furthermore, the oil leakage is fractional when the silicone grease was placed at 80 °C for 600 h, showing good thermal stability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    R. Gordon, Transl. Mater. Res. 2, 020301 (2015)

  2. 2.

    R.A. Shishkin, A.P. Zemlyanskaya, A.R. Beketov, Solid State Phenom. 284, 48 (2018)

  3. 3.

    S. Shaikh, K. Lafdi, E. Silverman, Carbon 45, 69 (2007)

  4. 4.

    J. Yang, S. Wang, H. Chen, Int. J. Heat Mass Transf. 97, 146 (2016)

  5. 5.

    D.M. Bi, Cryogenics 24, 46 (2011)

  6. 6.

    A.J. Mcnamara, Y. Joshi, Z.M. Zhang, Int. J. Therm. Sci. 62, 2 (2012)

  7. 7.

    J. Due, A.J. Robinson, Appl. Therm. Eng. 50, 455 (2013)

  8. 8.

    K.C. Otiaba, N.N. Ekere, R.S. Bhatti, S. Mallik, M.O. Alam, E.H. Amalu, Microelectron. Reliab. 51, 2031 (2011)

  9. 9.

    R. Prasher, Proc. IEEE 94, 1571 (2006)

  10. 10.

    A. Gowda, D. Esler, S.N. Paisner, S. Tonapi, K. Nagarkar, K. Srihari, IEEE Semiconductor Thermal Measurement & Management Symposium. (2005)

  11. 11.

    X. Huang, P. Jiang, T. Tanaka, IEEE Electr. Insul. Mag. 27, 8 (2011)

  12. 12.

    B.L. Zhu, J. Ma, J. Wu, K.C. Yung, C.S. Xie, J. Appl. Polym. Sci. 118, 2754 (2010)

  13. 13.

    K. Kim, J. Kim, Ceram. Int. 40, 5181 (2014)

  14. 14.

    L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, T.J. Goh, Thermochim. Acta 430, 155 (2005)

  15. 15.

    S. Kemaloglu, G. Ozkoc, A. Aytac, Thermochim. Acta 499, 40 (2010)

  16. 16.

    C. Chen, Y.Q. Xia, J.H. Chen, China Adhes. 26, 42 (2017)

  17. 17.

    Q. Wang, W. Gao, Z. Xie, J. Appl. Polym. Sci. 89, 2397 (2003)

  18. 18.

    A. Gowda, S.N. Paisner, S. Tonapi, P. Meneghetti, P. Hans, G. Strosaker, A. Acharya, K. Nagarkar, K. Srihari, Electronic Packaging Technology Conference. IEEE. (2006)

  19. 19.

    Y. Gao, J. Liu, Appl. Phys. A 107, 701 (2012)

  20. 20.

    H. Hong, G. Christensen, C. Widener, Procedia Manuf. 21, 623 (2018)

  21. 21.

    B.L. Wadey, J. Vinyl Addit. Technol. 9, 172 (2010)

  22. 22.

    G.F. Xie, D. Ding, G. Zhang, Adv. Phys. 3, 719 (2018)

  23. 23.

    C.Q. Liu, M. Chen, W. Yu, Y. He, ES Energy Environ. 2, 31 (2018)

  24. 24.

    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

  25. 25.

    D.H. Zhu, G.W. Huang, L.Y. Zhang, Y. He, H.Q. Xie, W. Yu, Energy Environ. Mater. 2, 22 (2019)

  26. 26.

    American Society for Testing Materials, method D5470-06 (2006)

  27. 27.

    Z.Y. Wei, J.K. Yang, W.Y. Chen, K.D. Bi, D.Y. Li, Y.F. Chen, Appl. Phys. Lett. 104, 081903 (2014)

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (51590902 & 51876112), the Key Subject of Shanghai Polytechnic University (Material Science and engineering; Grant Nos. XXKZD1601 and EGD18YJ0024), Hunan Provincial Natural Science Fund (2018JJ3478) and the Key projects of Hunan Provincial Education Department (no. 19A448).

Author information

Correspondence to Changqing Liu or Wei Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, C., He, Y., Liu, C. et al. Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03016-3

Download citation