Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Porous LaFeO3 microspheres decorated with Au nanoparticles for superior formaldehyde gas-sensing performances

Abstract

Formaldehyde is one of the most serious pollutants of volatile organic compounds in indoor environment. The monitoring of formaldehyde concentration of the indoor environment has become an urgent issue in modern society. In this paper, a facile wet-chemical method was used to prepare the catalytic Au nanoparticle-functionalized LaFeO3 porous microspheres with high formaldehyde (HCHO)-sensing performances. The Au/LaFeO3 nanocomposites were characterized by several common testing methods, such as XRD, SEM, EDS, TEM, and XPS. The results showed that Au nanoparticles were uniformly attached to the surface of porous LaFeO3 microspheres. And the gas-sensing experiments showed that Au nanoparticle-functionalized porous LaFeO3 microspheres showed high response even at low concentration (1 ppm), good selectivity, good reproducibility, and ultrafast response (2 s) and recovery (9 s) to formaldehyde. Therefore, the successful preparation of Au/LaFeO3 nanocomposites is expected to be used in the rapid detection of formaldehyde gas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    N. Yamazoe, Toward innovations of gas sensor technology. Sens. Actuators B 108, 2–14 (2005)

  2. 2.

    Y. Shimizu, M. Egashira, Basic aspects and challenges of semiconductor gas sensors. MRS Bull. 24, 18–24 (1999)

  3. 3.

    P. Karnati, S.A. Akbar, P.A. Morris, Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review. Sens. Actuators B 295, 127–143 (2019)

  4. 4.

    J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B 140, 319–336 (2009)

  5. 5.

    J. Zhang, X.H. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28, 795–831 (2016)

  6. 6.

    J.M. Walker, S.A. Akbar, P.A. Morris, Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: a review. Sens. Actuators B 286, 624–640 (2019)

  7. 7.

    A. Kolmakov, D.O. Klenov, Y. Liach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005)

  8. 8.

    M.J.S. Spencer, Gas sensing applications of 1D-nanostructured zinc oxide insights from density functional theory calculations. Prog. Mater. Sci. 57, 437–486 (2012)

  9. 9.

    P. Song, D. Han, H.H. Zhang, J. Li, Z.X. Yang, Q. Wang, Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sens. Actuators B 196, 434–439 (2014)

  10. 10.

    B. Zhang, J. Liu, X.B. Cui, Y.L. Wang, Y. Gao, P. Sun, F.M. Liu, K. Shimanoe, N. Yamazoe, G.Y. Lu, Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sens. Actuators B 241, 904–914 (2017)

  11. 11.

    Y.T. Wang, Y.Y. Lv, W.W. Zhan, Z.X. Xie, Q. Kuang, L.S. Zheng, Synthesis of porous Cu2O/CuO cages using Cu-based metal–organic frameworks as templates and their gas-sensing properties. J. Mater. Chem. A 3, 12796–12803 (2015)

  12. 12.

    Y.Y. Lv, W.W. Zhan, Y. He, Y.T. Wang, X.J. Kong, Q. Kuang, Z.X. Xie, L.S. Zheng, MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 6, 4186–4195 (2014)

  13. 13.

    J.M. Choi, J.H. Byun, S.S. Kim, Influence of grain size on gas-sensing properties of chemiresistive p-type NiO nanofibers. Sens. Actuators B 227, 149–156 (2016)

  14. 14.

    H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 192, 607–627 (2014)

  15. 15.

    D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B 204, 250–272 (2014)

  16. 16.

    S.J. Deng, X. Liu, N. Chen, D.Y. Deng, X.C. Xiao, Y.D. Wang, A highly sensitive VOC gas sensor using p-type mesoporous Co3O4 nanosheets prepared by a facile chemical coprecipitation method. Sens. Actuators B 233, 615–623 (2016)

  17. 17.

    C. Balamurugan, D.W. Lee, Perovskite hexagonal YMnO3 nanopowder as p-type semiconductor gas sensor for H2S detection. Sens. Actuators B 221, 857–866 (2015)

  18. 18.

    M. Siemons, A. Leifert, U. Simon, Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials. Adv. Funct. Mater. 17, 2189–2197 (2007)

  19. 19.

    P. Hao, P. Song, Z.X. Yang, Q. Wang, Synthesis of novel RuO2/LaFeO3 porous microspheres its gas sensing performances towards trimethylamine. J. Alloys Comp. 806, 960–967 (2019)

  20. 20.

    N.N. Toan, S. Saukko, V. Lantto, Gas sensing with semiconducting perovskite oxide LaFeO3. Physica B 327, 279–282 (2002)

  21. 21.

    X.F. Wang, H.W. Qin, L.H. Sun, J.F. Hu, CO2 sensing properties and mechanism of nanocrystalline LaFeO3 sensor. Sens. Actuators B 188, 965–971 (2013)

  22. 22.

    P. Song, H.W. Qin, L. Zhang, K. An, Z.J. Lin, J.F. Hu, M.H. Jiang, The structure, electrical and ethanol-sensing properties of La1−xPbxFeO3 perovskite ceramics with x ≤ 0.3. Sens. Actuators B 104, 312–316 (2005)

  23. 23.

    H.X. Xiao, C. Xue, P. Song, J. Li, Q. Wang, Preparation of porous LaFeO3 microspheres and their gas-sensing property. Appl. Surf. Sci. 337, 65–71 (2015)

  24. 24.

    B.Q. Wang, S.F. Zhang, T.S. Wang, P. Sun, X.H. Chuai, G.Y. Lu, Gas sensing with yolk-shell LaFeO3 microspheres prepared by facile hydrothermal synthesis. Sens. Actuators B 258, 1215–1222 (2018)

  25. 25.

    P. Song, H.H. Zhang, D. Han, J. Li, Z.X. Yang, Q. Wang, Preparation of biomorphic porous LaFeO3 by sorghum straw biotemplate method and its acetone sensing properties. Sens. Actuators B 196, 140–146 (2014)

  26. 26.

    P.A. Murade, V.S. Sangawar, G.N. Chaudhari, V.D. Kapse, A.U. Bajpeyee, Acetone gas-sensing performance of Sr-doped nanostructured LaFeO3 semiconductor prepared by citrate sol-gel route. Curr. Appl. Phys. 11, 451–456 (2011)

  27. 27.

    C. Doroftei, P.D. Popa, F. Iacomi, Synthesis of nanocrystalline La-Pb-Fe-O perovskite and methanol-sensing characteristics. Sens. Actuators B 161, 977–981 (2012)

  28. 28.

    Y.M. Zhang, Y.T. Lin, J.L. Chen, J. Zhang, Z.Q. Zhu, Q.J. Liu, A high sensitivity gas sensor for formaldehyde based on silver doped lanthanum ferrite. Sens. Actuators B 190, 171–176 (2014)

  29. 29.

    E.S. Cao, H.H. Wang, X.F. Wang, Y.Q. Yang, W.T. Hao, L. Sun, Y.J. Zhang, Enhanced ethanol sensing performance for chlorine doped nanocrystalline LaFeO3-δ powders by citric sol-gel method. Sens. Actuators B 251, 885–893 (2017)

  30. 30.

    Y.M. Zhang, J.H. Zhao, H.L. Sun, Z.Q. Zhu, J. Zhang, Q.J. Liu, B, N, S, Cl doped graphene quantum dots and their effects on gas-sensing properties of Ag-LaFeO3. Sens. Actuators B 266, 364–374 (2018)

  31. 31.

    Y.M. Zhang, J. Zhang, J.L. Chen, Z.Q. Zhu, Q.J. Liu, Improvement of response to formaldehyde at Ag-LaFeO3 based gas sensors through incorporation of SWCNTs. Sens. Actuators B 195, 509–514 (2014)

  32. 32.

    X.H. Liu, J. Zhang, L.W. Wang, T.L. Yang, X.Z. Guo, S.H. Wu, S.R. Wu, 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensor. J. Mater. Chem. 21, 349–356 (2011)

  33. 33.

    S.M. Majhi, G.K. Naik, H.J. Lee, H.G. Song, C.R. Lee, I.H. Lee, Y.T. Yu, Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sens. Actuators B 268, 223–231 (2018)

  34. 34.

    L. Liu, Y.T. Zhao, P. Song, Z.X. Yang, Q. Wang, ppb level triethylamine detection of yolk-shell SnO2/Au/Fe2O3 nanoboxes at low-temperature. Appl. Surf. Sci. 476, 391–401 (2019)

  35. 35.

    X.Z. Wang, X. Xie, X.J. Song, J. Tian, S.X. Ma, H.Z Cui. Fabrication of Au modified porous ZnO microspheres with enhanced gas sensing properties. Powder Technol. 313 (2017) 379–384.

  36. 36.

    K.M. Parida, K.H. Reddy, S. Martha, D.P. Das, N. Biswal, Fabrication of nanocrystalline LaFeO3: an efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int. J. Hydrogen Energy 35, 12161–12168 (2010)

  37. 37.

    E.S. Cao, Y.R. Qin, T.T. Cui, L. Sun, W.T. Hao, Y.J. Zhang, Influence of Na doping on the magnetic properties of LaFeO3 powders and dielectric properties of LaFeO3 ceramics prepared by citric sol-gel method. Ceram. Int. 43, 7922–7928 (2017)

  38. 38.

    S. Thirumalairajan, K. Girija, N.Y. Hebalkar, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Novel synthesis of LaFeO3 nanosructure dendrites: a systematic investigation of growth mechanism, properties, and biosensing for highly selective determination of neurotransmitter compounds. Cryst. Growth Des. 13, 291–302 (2013)

  39. 39.

    Z.X. Wei, Y. Wang, J.P. Liu, C.M. Xiao, W.W. Zeng, S.B. Ye, Synthesis, magnetization, and photocatalytic activity of LaFeO3 and LaFe0.9Mn0.1O3−δ. J. Sol-Gel Sci. Technol. 48, 1117–1126 (2013)

  40. 40.

    S. Phokha, S. Pinitsoontorn, S. Maensiri, S. Rujirawat, Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. J. Sol-Gel Sci. Technol. 71, 333–341 (2014)

  41. 41.

    A. Mashkoor, Y.Y. Shi, N. Amjad, H.Y. Sun, W.C. Shen, M. Wei, J. Zhu, Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 21, 7723–7729 (2011)

  42. 42.

    S. Zhang, P. Song, J. Zhang, H.H. Yan, J. Li, Z.X. Yang, Q. Wang, Highly sensitive detection of acetone using mesoporous In2O3 nanospheres modified with Au nanoparticles. Sens. Actuators B 242, 983–993 (2017)

  43. 43.

    S. Li, M. Cheng, G.N. Liu, High-response and low-temperature nitrogen dioxide gas sensor based on gold-loaded mesoporous indium trioxide. J. Colloid Interf. Sci. 524, 368–378 (2018)

  44. 44.

    Y. Zhang, J. Zhang, J. Zhao, Z. Zhu, Q. Liu, Ag-LaFeO3 fibers, spheres, and cages for ultrasensitive detection of formaldehyde at low operating temperatures. Phys. Chem. Chem. Phys. 19, 6973–6980 (2017)

  45. 45.

    N. Zhang, S.P. Ruan, Y.Y. Yin, F. Li, S.P. Wen, Y. Chen, Self-sacrificial template driven LaFeO3/α-Fe2O3 porous nano-octahedrons for acetone sensing. ACS Appl. Nano Mater. 1, 4671–4681 (2018)

  46. 46.

    Z.W. Li, Supersensitive and superselective formaldehyde gas sensor based on NiO nanowires. Vacuum 143, 50–53 (2017)

  47. 47.

    Y. Lin, Y. Wang, W. Wei, L.H. Zhu, S.P. Wen, S.P. Ruan, Synergistically improved formaldehyde gas sensing properties of SnO2 microspheres by indium and palladium co-doping. Ceram. Int. 41, 7329–7336 (2015)

  48. 48.

    W. Wei, S.J. Guo, C. Chen, L. Sun, Y. Chen, W.B. Guo, S.P. Ruan, High sensitive and fast formaldehyde gas sensor based on Ag-doped LaFeO3 nanofibers. J. Alloys Compd. 695, 1122–1127 (2017)

  49. 49.

    T. Tong, J.G. Chen, D.R. Jin, J.R. Cheng, Preparation and gas sensing characteristics of BiFeO3 crystallites. Mater. Lett. 197, 160–162 (2017)

  50. 50.

    B.Q. Wang, Q. Yu, S.F. Zhang, T.S. Wang, P. Sun, X.H. Chuai, G.Y. Lu, Gas sensing with Yolk-Shell LaFeO3 microspheres prepared by facile hydrothermal synthesis. Sens. Actuators B 258, 1215–1222 (2018)

  51. 51.

    P. Song, Q. Wang, Z. Zhang, Z.X. Yang, Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton. Sens. Actuators B 147, 248–254 (2010)

  52. 52.

    T. Chen, Q.J. Liu, Z.L. Zhou, Y.D. Wang, The fabrication and gas-sensing characteristics of the formaldehyde gas sensors with high response. Sens. Actuators B 131, 301–305 (2008)

  53. 53.

    Y.M. Zhang, Y.T. Lin, J.L. Chen, J. Zhang, Z.Q. Zhu, Q.J. Liu, A high response gas sensor for formaldehyde based on silver doped lanthanum ferrite. Sens. Actuators B 190, 171–176 (2014)

  54. 54.

    H.T. Fan, T. Zhang, X.J. Xu, N. Lv, Fabrication of N-type Fe2O3 and P-type LaFeO3 nanobelts by electrospinning and determination of gas-sensing properties. Sens. Actuators B 153, 83–88 (2011)

  55. 55.

    X. Ren, H.T. Yang, S. Gen, J. Zou, T.Z. Yang, X.Q. Zhang, Z.H. Cheng, S.H. Sun, Controlled growth of LaFeO3 nanoparticles on reduced graphene oxide for highly efficient photocatalysis. Nanoscale 8, 752–756 (2015)

  56. 56.

    S.J. Ippolito, S. Kandasamy, K. Kalantar-zadeh, W. Wlodarski, Hydrogen sensing characteristics of WO3 thin Film conductometric sensors activated by Pt and Au catalysts. Sens. Actuators B 108, 154–158 (2005)

  57. 57.

    J. Zhang, X. Liu, S. Wu, B. Cao, S. Zheng, One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas senor performance. Sens. Actuators B 169, 61–66 (2012)

  58. 58.

    D. Han, P. Song, S. Zhang, H.H. Zhang, Q. Xu, Q. Wang, Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method. Sens. Actuators B 216, 488–496 (2015)

  59. 59.

    J. Zhang, X. Liu, S. Wu, M. Xu, X. Guo, S. Wang, Au nanoparticle-modified porous SnO2 hollow spheres: a new model for a chemical sensor. J. Mater. Chem. 20, 6453–6459 (2010)

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 61102006 and 51672110) and Natural Science Foundation of Shandong Province, China (Nos. ZR2018LE006 and ZR2015EM019).

Author information

Correspondence to Peng Song or Qi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, P., Song, P., Yang, Z. et al. Porous LaFeO3 microspheres decorated with Au nanoparticles for superior formaldehyde gas-sensing performances. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03015-4

Download citation