Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Facile synthesis, characterization and intensity-dependent nonlinear absorption of Ni-doped (γ and β)-BaB2O4 nanostructures

Abstract

Intensity-dependent nonlinear optical absorption and optical limiting behavior of Ni2+-doped (γ and β)-BaB2O4 nanostructures were examined by open-aperture Z-scan technique under nanosecond pulsed green laser excitation. Observation of reverse saturable absorption (RSA) with variation in nonlinear absorption coefficient as function of on-axis peak intensity ascertains the presence of sequential 2PA process (1PA + ESA). Due to the introduced near-resonant energy state through incorporation of Ni2+ ions, the material exhibits excited state absorption (ESA). Here, the observed sequential 2PA in Ni2+-doped γ-BaB2O4 involves the 1T1g(G) states of 3d8–3d8 and 1T1g(D) states of Ni2+, while Ni-doped β-BaB2O4 undergoes the electronic transition involving intraionic 3d8–3d8 transition of Ni2+ and self-trapped excitonic state of BBO. Interestingly, as the dopant concentration and on-axis intensity increased, 2PA coefficient was found to be increased. 0.05 M Ni2+-doped β-BaB2O4 nanostructures possess higher 2PA coefficient (2.31 × 10−10 m/W) and lower onset limiting threshold (0.79 × 1012 W/m2), which makes it a promising candidate for optical limiting applications. The result suggests that band structure tunability to induce excited state absorption with enhanced nonlinear absorption coefficient is possible through Ni doping in β-BaB2O4 nanostructures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    B.N. Van, W.M. Ron, D. Archie, M. Leon, C.C. William, The effects of Laser illumination on Operational and Visual Performance of pilots conducting terminal operations. Office of Aerospace Medicine Washington, DC 20591, 1–10 (2013)

  2. 2.

    R. Gunnar, E. Bernd, Automatic laser glare suppression in electro-optical sensors. Sensors 15, 792–802 (2015)

  3. 3.

    R. Morvarid, D. Davoud, Investigation of optical limiting in nanometals. Rev. Adv. Mater. Sci. 40, 110–126 (2015)

  4. 4.

    B. Quentin, S.M. Nikolay, A.B. Pierre et al., Excited state absorption: a key phenomenon for the improvement of biphotonic based optical limiting at telecommunication wavelengths. Chem. Chem. Phys. 14, 15299–15307 (2012)

  5. 5.

    Z. Xiaoqing, F. Miao, Z. Hongbing, Giant optical limiting effect in Ormosil gel glasses doped with graphene oxide materials. J. Mater. Chem. C 1, 6759–6766 (2013)

  6. 6.

    S. Yaoguo, Z. Sangen, L. Junhua, The role of cations in second-order nonlinear optical materials based on π-conjugated [BO3]3− groups. Coord. Chem. Rev. 366, 1–28 (2018)

  7. 7.

    L. Lili, S. Xin, Y. Yun et al., Ba2B10O17: a new centrosymmetric alkaline-earth metal borate with a deep-UV cut-off edge. Dalton Trans. 43, 8905–8910 (2014)

  8. 8.

    RCh. Venkata, KCh. Rama, T.R. Raghavendra, U.S. UdayachandranThampy, Y.P. Reddy, P.S. Rao, R.V.S.S.N. Ravikumar, Synthesis and spectral characterizations of Fe3+ doped β-BaB2O4 nano crystallite powder. J. Mol. Struct. 1012, 17–21 (2012)

  9. 9.

    C. Babeela, G.T.C. Sabari, Low temperature phase barium borate: a new optical limiter in continuous wave and nano pulsed regime. Opt. Mater. 49, 190–195 (2015)

  10. 10.

    H.A. Elbatal, A.M. Abdelghany, N.A. Ghoneim, F.H. Elbatal, Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study. Spectrochim. Acta A 133, 534–541 (2014)

  11. 11.

    RCh. Venkata, KCh. Rama, R.T. Raghavendra, D.V. Sathish, P.S. Rao, R.V.S.S.N. Ravikumar, Synthesis and optical properties of Co2+ and Ni+ ions doped β-BaB2O4 nanopowders. J. Lumin. 132, 2325–2329 (2012)

  12. 12.

    A.M. Abdelghany, A.H. Hammed, Impact of vanadium ions in barium borate glass. Spectrochim. Acta A 137, 39–44 (2015)

  13. 13.

    C.R.P. Sreekanth, A. Murali, R.J. Lakshmana, Electron paramagnetic resonance and optical absorption studies of FeIII ions in alkali barium borate glasses. Opt. Mater. 10, 109–116 (1998)

  14. 14.

    F.A. Moustafa, A.M. Fayad, F.M. Ezz-Eldin, I. El-Kashif, Effect of gamma radiation on ultraviolet, visible and infrared studies of NiO, Cr2O3 and Fe2O3 doped alkali borate glasses. J. Non Cryst. Solids 376, 18–25 (2013)

  15. 15.

    B. Karthikeyan, T. Pandiyarajan, S. Hariharan, S.O. Muhamed, Wet chemical synthesis of diameter tuned NiO microrods: microstructural, optical and optical power limiting applications. CrystEngComm 18, 601–607 (2016)

  16. 16.

    C. Babeela, T.C.G. Sabari, G. Vinitha, Optical limiting behavior of β-BaB2O4 nanoparticles in pulsed and continuous wave regime. J. Phys. D 48, 065102–065109 (2015)

  17. 17.

    T.C.G. Sabari, M. Saravanan, G. Vinitha, Role of reaction time in tuning the morphology and third order nonlinear optical properties of barium borate. Opt. Laser Technol. 89, 54–58 (2017)

  18. 18.

    W. Wenzhong, L. Yingkai, X. Congkang, Z. Changlin, W. Guanghou, Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach. Chem. Phys. Lett. 362, 119–122 (2002)

  19. 19.

    C. Mrabet, A.M. Ben, A. Boukhachem, M. Amlouk, T. Manoubi, Physical properties of La-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceram. Int. 42, 5 (2016)

  20. 20.

    H.A. ElBatal, A.M. Abdelghany, N.A. Ghoneim, F.H. ElBatal, Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study. Spectrochim Acta A 133, 534–541 (2014)

  21. 21.

    S. Manna, A.K. Deb, J. Jagannath, S.K. De, Synthesis and room temperature ferromagnetism in Fe doped NiO nanorods. J. Phys. Chem. C 112, 10659–10662 (2008)

  22. 22.

    S. Bin, Z. Yuxia, Z. Rui, Y. Haohai, Z. Guowei, Z. Huaijin, W. Jiyang, Nonlinear optical response during the electron transition process originated from 3D spin-orbit splitting in NiO nanosheets. Opt. Express 26, 2 (2018)

  23. 23.

    A.K. Ramasami, M.V. Reddy, G.R. Balakrishna, Combustion synthesis and characterization of NiO nanoparticles. Mater. Sci. Semicond. Process. 40, 194–202 (2015)

  24. 24.

    K. Anandan, V. Rajendran, Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties. Mater. Sci. Semicond. Process. 14, 43–47 (2011)

  25. 25.

    A. Thulasiramudu, B. Sdu, Optical characterization of Mn2+, Ni2+ and Co2+ ions doped zinc lead borate glasses. J. Quant. Spectrosc. Radiat. Transf. 102, 212–227 (2006)

  26. 26.

    Chakrabarty S and Chatterjee K (2011) Synthesis and Optical Manifestation of NiO-Silica Nanocomposite, ISRN Nanotechnology, 719027.

  27. 27.

    P.H. Borse, N. Deshmukh, R.F. Shinde, S.K. Date, S.K. Kulkarni, Luminescence quenching in ZnS nanoparticles due to Fe and Ni doping. J. Mater. Sci. 34, 6087–6093 (1999)

  28. 28.

    G.P. Manthos, A.J. Sadlej, L. Jerzy, Non-linear Optical Properties of Matter (Springer, Dordrecht, 2006)

  29. 29.

    M.S. Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W.V. Stryland, Sensitive measurement of optical nonlinearities using a single beam. J. Quantum. Electron. 26, 760–770 (1990)

  30. 30.

    Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, Y. Song, Saturable absorption and reverse saturable absorption in platinum nanoparticles. Opt. Commun. 251, 429–433 (2005)

  31. 31.

    L. Nikolas, J.T. Fourkas, The characterization of absorptive nonlinearities. Laser Photonics Rev. 11, 1700106 (2017)

  32. 32.

    T.N. Narayanan, C.S. Suchand Sandeep, M.M. Shaijumon, P.M. Ajayan, P. Reji, M.R. Anantharaman, The synthesis of high coercivity cobalt-in-carbon nanotube hybrid structures and their optical limiting properties. Nanotechnology 20, 285702–285709 (2009)

  33. 33.

    B.S. Kalanoor, L. Gouda, R. Gottesman, S. Tirosh, E. Haltzi, A. Zaban, Y.R. Tischler, Third-order optical nonlinearities in organometallic methyl ammonium lead iodide perovskite thin films. ACS Photonics 3, 361–370 (2016)

  34. 34.

    V. Tamilselvan, S. Kishore, R.K. Narasimha, P. Reji, Optical nonlinearity in lead sulfide microtowers. J. Phys. D 43, 385402 (2010)

  35. 35.

    T. Paulose, P. Sreekanth, P. Reji, K.E. Abraham, Morphology dependent nanosecond and ultrafast optical power limiting of CdO nanomorphotypes. RSC Adv. 5, 30517–35025 (2015)

  36. 36.

    R.K. Mani, N. Padmanathan, P. Reji, S. Balamurugan, C.C. Kanakam, Structural evaluation and nonlinear optical properties of Ni/NiO, Ni/NiCo2O4 and Co/Co3O4 nanocomposites. Appl. Surf. Sci. 282, 656–661 (2013)

  37. 37.

    J.T. Jeevan, K. Shiji, K. Sridharan, P. Reji, K. Nandkumar, A comparative study on the optical limiting properties of different nano spinel ferrites with Z-scan technique. Mater. Res. Bull. 47, 1855–1860 (2012)

  38. 38.

    M.A.P. Reena, C.S. Suchand, T.N. Narayanan, P. Reji, M. Padraing, P.M. Ajayan, M.R. Anantharaman, Nonlinear and magneto-optical transmission studies on magnetic nanofluids of non-interacting metallic nickel nanoparticles. Nanotechnolgy 22, 375702 (2011)

  39. 39.

    S. Kishore, K. Tintu, P. Reji, J.P. Tae, Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts. Appl. Surf. Sci. 308, 139–147 (2014)

  40. 40.

    M.K. Kavitha, H. John, P. Gopinath, R. Philip, Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties. J. Mater. Chem. C 1, 3669–3676 (2013)

  41. 41.

    B. Anand, A. Kaniyoor, D. Swain, T.T. Baby, S. Venugopal Rao, S.S.S. Sai, S. Ramaprabhu, R. Philip, Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids. J. Mater. Chem. C 2, 10116–101123 (2014)

  42. 42.

    C. Zheng, W. Chen, Y. Huang, X. Xiao, X. Ye, Graphene oxide–noble metal Au, Pt, and Pd) nanoparticle composites as optical limiters. RSC Adv. 4, 39697–39703 (2014)

  43. 43.

    S. Biswas, A.K. Kole, C.S. Tiwary, P. Kumbhakar, Enhanced nonlinear optical properties of graphene oxide–silver nanocomposites measured by Z-scan technique. RSC Adv. 6, 10319–10325 (2016)

  44. 44.

    M. Saravanan, T.C. Sabari Girisun, Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures. Appl. Surf. Sci. 392, 904–911 (2017)

  45. 45.

    R. Udayabhaskar, B. Karthikeyan, P. Sreekanth, R. Philip, Enhanced multi-phonon Raman scattering and nonlinear optical power limiting in ZnO: Au nanostructures. RSC Adv. 5, 13590–13597 (2015)

  46. 46.

    J. Khatei, C.S.S. Sandeep, R. Philip, K.S.R.K. Rao, Near-resonant two-photon absorption in luminescent CdTe quantum dots. Appl. Phys. Lett. 100, 081901–081903 (2012)

  47. 47.

    K.M. Rahulan, N. Padmanathan, R. Philip, S. Balamurugan, C.C. Kanakam, Structural evaluation and nonlinear optical properties of Ni/NiO, Ni/NiCo2O4 and Co/Co3O4 nanocomposites. Appl. Surf. Sci. 282, 656–661 (2013)

  48. 48.

    C.S.S. Sandeep, A.K. Samal, T. Pradeep, R. Philip, Optical limiting properties of Te and Ag2Te nanowires. Chem. Phys. Lett. 485, 326–330 (2010)

  49. 49.

    X. Zheng, M. Feng, H. Zhan, Giant optical limiting effect in Ormosil gel glasses doped with graphene oxide materials. J. Mater. Chem. C 1, 6759–6766 (2013)

  50. 50.

    B. Karthikeyan, R. Udayabhaskar, T.P. Rose, T. Pandiyarajan, R. Philip, Sol–gel prepared Cu2O microspheres: linear and nonlinear optical properties. RSC Adv. 4, 39541–39546 (2014)

  51. 51.

    W. Song, C. He, Y. Dong, W. Zhang, Y. Gao, Y. Wu, Z. Chen, The effects of central metals on the photophysical and nonlinear optical properties of reduced graphene oxide–metal(ii) phthalocyanine hybrids. Phys. Chem. Chem. Phys. 17, 7149–7157 (2015)

Download references

Acknowledgements

Author T.C.S acknowledges the CSIR, India [03(1375)/16/EMR-II] for providing financial support to carry out this research work. Author M.A is thankful to the Deanship of Scientific Research at King Khalid University for funding this work through the Research Group Project under Grant Number R. G. P. 2/60/40.

Author information

Correspondence to T. C. Sabari Girisun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babeela, C., Assiri, M.A. & Sabari Girisun, T.C. Facile synthesis, characterization and intensity-dependent nonlinear absorption of Ni-doped (γ and β)-BaB2O4 nanostructures. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03014-5

Download citation