Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

MBE growth of InAs/GaAs quantum dots on sintered porous silicon substrates with high optical quality in the 1.3 μm band

  • 21 Accesses

Abstract

We report self-assembled InAs/GaAs quantum dots (QDs) monolithically grown on a compliant transferable silicon nanomembrane. The transferable silicon nanomembrane with flat continuous crystalline silicon layer formed via in situ porous silicon sintering is considered a low-cost seed for heteroepitaxy of free-standing single-crystalline foils for photovoltaic cells. In this paper, the compliant feature of transferable silicon nanomembrane has been exploited for direct growth of high-quality InAs/GaAs (QDs) by molecular beam epitaxy. Bright 1.3 µm room temperature photoluminescence from InAs/GaAs QDs has been obtained. The excellent structural and optical qualities of the obtained InAs/GaAs quantum dots offer great opportunities for realizing a low-cost and large-scale integration of III–V-based optoelectronic device on silicon.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    L. Güniat, S. Martí-Sánchez, O. Garcia, M. Boscardin, D. Vindice, N. Tappy, M. Friedl, W. Kim, M. Zamani, L. Francaviglia, A. Balgarkashi, J.-B. Leran, J. Arbiol, A. Fontcuberta i Morral, ACS Nano 13(5), 5833–5840 (2019). https://doi.org/10.1021/acsnano.9b01546

  2. 2.

    R. Cariou, J. Benick, F. Feldmann, O. Höhn, H. Hauser, P. Beutel, N. Razek, M. Wimplinger, B. Bläsi, D. Lackner, M. Hermle, G. Siefer, S.W. Glunz, A.W. Bett, F. Dimroth, Nat. Energy 3, 326–333 (2018)

  3. 3.

    J. Wu, M. Tang, H. Liu, Photon. Res. 6(4), 321–325 (2018). https://doi.org/10.1364/PRJ.6.000321

  4. 4.

    J. Seidl, J.G. Gluschke, X. Yuan, S. Naureen, N. Shahid, H.H. Tan, C. Jagadish, A.P. Micolich, P. Caroff, Regaining. Nano Lett. 19(7), 4666–4677 (2019)

  5. 5.

    C. Merckling, S. Jiang, Z. Liu, N. Waldron, G. Boccardi, R. Rooyackers, Z. Wang, B. Tian, M. Pantouvaki, N. Collaert, J. Van Campenhout, M. Heyns, D. Van Thourhout, W. Vandervorst, A. Thean, ECS Trans. 66(4), 107–116 (2015)

  6. 6.

    B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, R. Langer, Semicond. Sci. Technol. 33, 093002 (2018)

  7. 7.

    A. Zhou, Y. Ping Wang, C. Cornet, Y. Léger, L. Pédesseau, V. Favre-Nicolin, G.A. Chahine, T.U. Schülli, J. Eymery, M. Bahri, L. Largeau, G. Patriarche, O. Durand, A. Létoublon, J. Appl. Cryst. 52, 809–815 (2019)

  8. 8.

    N. Ozaki, D. Childs, A. Boldin, D. Ikuno, K. Onoue, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, R. Hogg, Proc. SPIE 10939, Novel In-Plane Semiconductor Lasers XVIII, 1093911. https://doi.org/10.1117/12.2509984

  9. 9.

    S.-Y. Lin, Y.-J. Tsai, S.-C. Lee, Jpn. J. Appl. Phys. 40, L1290–L1292 (2001)

  10. 10.

    Lukianov, K. Murakami, C. Takazawa, M. Ihara, Appl. Phys. Lett. 108, 213904 (2016)

  11. 11.

    Hariharsudan, S. Radhakrishnan, R. Martini, V. Depauw, K. Van Nieuwenhuysena, T. Bearda, I. Gordon, J. Szlufcik, J. Poortmans, Solar Energy Mater. Solar Cells 135, 113–123 (2015)

  12. 12.

    P.H.J. Kim, V. Depauw, G. Agostinelli, G. Beaucarne, J. Poortmans, Thin Solid Films 511–512, 411–414 (2006)

  13. 13.

    C.S. Solanki, L. Carnel, K. Van Nieuwenhuysen, A. Ulyashin, N. Posthuma, G. Beaucarne, J. Poortmans, Prog. Photovolt.: Res. Appl. 13, 201–208 (2005)

  14. 14.

    Boucherif, N.P. Blanchard, P. Regreny, O. Marty, G. Guillot, G. Grenet, V. Lysenko, Thin Solid Films 518(9), 2466–2469 (2010)

  15. 15.

    M. Aouassa, S. Escoubas, A. Ronda, L. Favre, S. Gouder, R. Mahamdi, E. Arbaoui, A. Halimaoui, I. Berbezier, Appl. Phys. Lett. 101, 233105 (2012)

  16. 16.

    M. Aouassa, I. Jadli, L.S. Hassayoun, H. Maaref, G. Panczer, L. Favre, A. Ronda, I. Berbezier, Superlatt. Microstruct. 112, 493–498 (2017)

  17. 17.

    I. Berbezier, J.-N. Aqua, M. Aouassa, L. Favre, S. Escoubas, A. Gouyé, A. Ronda, Phys. Rev. B 90, 035315 (2014)

  18. 18.

    C.S. Solanki, R.R. Bilyalov, J. Poortmans, R. Mertens, Solar Energy Mater. Solar Cells 83(1), 101–113 (2004)

  19. 19.

    S. Kitamura, M. Senshu, T. Katsuyama, Y. Hino, N. Ozaki, S. Ohkouchi, Y. Sugimoto, R.A. Hogg, Nanoscale Res. Lett. 10, 231 (2015)

  20. 20.

    Y. Hino, N. Ozaki, S. Ohkouchi, N. Ikeda, Y. Sugimoto, Growth of InAs/GaAs quantum dots with central emission wavelength of 1.05 μm using In-flush technique for broadband near-infrared light source. J. Cryst. Growth 378, 01–505 (2013)

  21. 21.

    F. Guffarth, R. Heitz, A. Schliwa, K. Pötschke, D. Bimberg, Observation of monolayer-splitting for InAs/GaAs quantum dots. Physica E 21, 326–330 (2004)

  22. 22.

    R. Heitz, F. Guffarth, K. Pötschke, A. Schliwa, D. Bimberg, N.D. Zakharov et al., Shell-like formation of self-organized InAs/GaAs quantum dots. Phys. Rev. B 71(045325), 1–7 (2005)

  23. 23.

    Y. Wan, Q. Li, Y. Geng, B. Shi, K.M. Lau, Appl. Phys. Lett. 107, 081106 (2015)

Download references

Author information

Correspondence to Mansour Aouassa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aouassa, M., Franzò, G., Assaf, E. et al. MBE growth of InAs/GaAs quantum dots on sintered porous silicon substrates with high optical quality in the 1.3 μm band. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03012-7

Download citation