Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Annealing impact on emission and phase varying of Nd-doped Si-rich-HfO2 films prepared by RF magnetron sputtering

  • 11 Accesses

Abstract

HfO2 films doped with Nd and Si atoms were produced by RF magnetron sputtering in argon plasma atmosphere. The effect of annealing treatment on the morphology, crystal structure and light emission of the films was investigated by means of the scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). The thermal treatment was performed in the temperature range of TA = 800–1100 °C in horizontal furnace with continuous nitrogen flow. For annealed Si–HfO2:Nd films, the SEM study revealed the formation of the grains with the mean size of about 20–60 nm that show the tendency to enlarge with the TA rise. Besides, the phase separation was observed and tetragonal HfO2 and SiO2 phases were detected by the XRD method for the films annealed at TA > 950 °C. The PL study revealed that both Nd3+ ions and host defects contribute to PL emission whereas their relative contribution depends on the TA and on the crystal phase of host matrix. The highest PL intensity of Nd3+ ions via 4f inner electronic shell levels was detected for TA = 950 °C. The variation of PL intensity of Nd3+ ions was correlated with the change of PL intensity of the band caused by the host defects. These latter participate in the energy transfer towards Nd3+ ions. This statement was confirmed by XPS data, as well as by the shape of PL spectra. It was shown that the bright emission via Nd3+ ions can be achieved for those located in the tetragonal HfO2 matrix.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Komarek, K.L., Spencer, P.J., International Atomic Energy Agency: Hafnium : physico-chemical properties of its compounds and alloys. Atomic Energy Review Special issue; no 8. International Atomic Energy Agency, Vienna (1981)

  2. 2.

    S. Sayan, E. Garfunkel, T. Nishimura, W.H. Schulte, T. Gustafsson, G.D. Wilk, J. Appl. Phys. 94(2), 928 (2003)

  3. 3.

    K.J. Hubbard, D.G. Schlom, J. Mater. Res. 11, 2757 (1996)

  4. 4.

    S. Ramanathan, P.C. McIntyre, J. Luning, P.S. Lysaght, Y. Yang, Z. Chen, S. Stemmer, J. Electrochem. Soc. 150(10), F173 (2003)

  5. 5.

    J. Robertson, Rep. Prog. Phys. 69, 327 (2006)

  6. 6.

    J. Robertson, Eur. Phys. J. 28, 265 (2004)

  7. 7.

    L.X. Liu, Z.W. Ma, Y.Z. Xie, Y.R. Su, H.T. Zhao, M. Zhou, J.Y. Zhou, J. Li, E.Q. Xie, J. Appl. Phys. 107, 024309 (2010)

  8. 8.

    G.C. Righini, S. Berneschi, G.N. Conti, S. Pelli, E. Moser, R. Retoux, P. Féron, R.R. Gonçalves, G. Speranza, Y. Jestin, M. Ferrari, A. Chiasera, A. Chiappini, C. Armellini, J. Non-Cryst. Solids 355, 1853 (2009)

  9. 9.

    N.D. Afify, G. Dalba, F. Rocca, J. Phys. D 42, 115416 (2009)

  10. 10.

    L. Khomenkova, Y.-T. An, D. Khomenkov, X. Portier, C. Labbé, F. Gourbilleau, Phys B 453, 100 (2014)

  11. 11.

    R. Demoulin, G. Beainy, C. Castro, P. Pareige, L. Khomenkova, C. Labbé, F. Gourbilleau, E. Talbot, Nano Futures 2, 035005 (2018)

  12. 12.

    T. Torchynska, B. El Filali, L. Khomenkova, F. Gourbilleau, J. Vac. Sci. Technol. A 37, 031503 (2019)

  13. 13.

    L.G.V. Macotela, T. Torchynska, L. Khomenkova, F. Gourbilleau, Mater. Chem. Phys. 229, 263 (2019)

  14. 14.

    V. Monteseguro, M. Rathaiah, K. Linganna, A.D. Lozano-Gorrín, M.A. Hernández-Rodríguez, I.R. Martín, P. Babu, U.R. Rodríguez-Mendoza, F.J. Manjón, A. Muñoz, C.K. Jayasankar, V. Venkatramu, V. Lavín, Opt. Mater. Express 5, 1661 (2015)

  15. 15.

    M. Pollnau, P.J. Hardman, W.A. Clarkson, D.C. Hanna, Opt. Commun. 147, 203 (1998)

  16. 16.

    O. Jambois, F. Gourbilleau, A.J. Kenyon, J. Montserrat, R. Rizk, B. Garrido, Opt. Express 18, 2230 (2010)

  17. 17.

    S. Cueff, C. Labbé, J. Cardin, J.-L. Doualan, L. Khomenkova, K. Hijazi, O. Jambois, B. Garrido, R. Rizk, J. Appl. Phys. 108, 064302 (2010)

  18. 18.

    A. Podhorodecki, J. Misiewicz, F. Gourbilleau, J. Cardin, C. Dufour, Electrochem. Solid-State Lett. 13, K26 (2010)

  19. 19.

    C.-H. Liang, O. Debieu, Y.-T. An, L. Khomenkova, J. Cardin, F. Gourbilleau, J. Lumines. 132, 3118 (2012)

  20. 20.

    P. Pirasteh, J. Charrier, Y. Dumeige, J.-L. Doualan, P. Camy, O. Debieu, C.-H. Liang, L. Khomenkova, J. Lemaitre, Y.G. Boucher, F. Gourbilleau, J. Appl. Phys. 114, 014906 (2013)

  21. 21.

    B. Vincent Crist, Binding Energy Lookup Table for Signals from Elements and Common Chemical Species. Handbook of The Elements and Native Oxides (XPS International, Inc., Mountain View, CA, 1999). https://srdata.nist.gov/xps/selEnergyType.aspx

  22. 22.

    A. Szytul, D. Fus, B. Penc, A. Jezierski, Alloys Compd. 317–318, 340 (2001)

  23. 23.

    R. Yuvakkumar, S.I. Hong, J. Sol-Gel Sci. Technol. 73, 511 (2015)

  24. 24.

    X. Fan, H. Liu, Ch. Fei, Mater. Res. Express 1, 045005 (2014)

  25. 25.

    T.-M. Pan, J.-D. Lee, W.-W. Yeh, J. Appl. Phys. 101, 024110 (2007)

  26. 26.

    J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, J. Alloys Compd. 616, 614 (2014)

Download references

Acknowledgements

This work was supported by the National Academy of Sciences of Ukraine (Project III-4-16), Ministry of Education and Science of Ukraine (Project ID: 89452), the French National Agency of Research (ANR), as well as by CONACYT Mexico (Grant 258224) and SIP-IPN Mexico (20195080).

Author information

Correspondence to T. Torchynska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torchynska, T., Vega Macotela, L.G., Khomenkova, L. et al. Annealing impact on emission and phase varying of Nd-doped Si-rich-HfO2 films prepared by RF magnetron sputtering. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03010-9

Download citation