Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structural and Opto-electronic characterization of CuO thin films prepared by DC reactive magnetron sputtering

  • 47 Accesses

Abstract

P-type CuO thin films have been deposited and optimized for large-area photodetection applications by tuning the sputtering pressure and oxygen to argon gas ratio, considering both high-temperature sputtering and post-annealing. The obtained layers show tunable bandgaps from 1.30 to 2.04 eV and Urbach energies lower than 8 meV. Reliable Hall measurements reveal the inverse double logarithmic relationship between Hall mobility and carrier concentration. By setting the optimal sputtering pressure of 10 mTorr (O2/Ar = 8/22 sccm) at the edge of oxidization and transition regimes, CuO with 1.64 eV bandgap reaches stable hole mobility of 34.2 cm2V−1 s−1 and hole concentration of 3.92 × 1014 cm−3 after 250 °C post-annealing. Considering heating at 150 °C during the deposition, CuO with 1.63 eV bandgap also reaches stable record hole mobility of 113.7 cm2V−1 s−1 and hole concentration of 1.39 × 1014 cm−3.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    F.H. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Nat. Nanotechnol. 9, 780 (2014)

  2. 2.

    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8, 497 (2013)

  3. 3.

    Z.P. Ling, R. Yang, J.W. Chai, S.J. Wang, W.S. Leong, Y. Tong, D. Lei, Q. Zhou, X. Gong, D.Z. Chi, K.W. Ang, Opt. Express 23, 13580 (2015)

  4. 4.

    J. Xia, X. Huang, L.Z. Liu, M. Wang, L. Wang, B. Huang, D.D. Zhu, J.J. Li, C.Z. Gu, X.M. Meng, Nanoscale 6, 8949 (2014)

  5. 5.

    J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, X.-M. Meng, Adv. Funct. Mater. 25, 4255 (2015)

  6. 6.

    K. Sun, Y. Jing, N. Park, C. Li, Y. Bando, D. Wang, J. Am. Chem. Soc. 132, 15465 (2010)

  7. 7.

    M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E.H. Sargent, O.M. Bakr, Nat. Commun. 6, 8724 (2015)

  8. 8.

    Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, R. Zhang, Nat. Commun. 6, 8589 (2015)

  9. 9.

    H.J. Song, M.H. Seo, K.W. Choi, M.S. Jo, J.Y. Yoo, J.B. Yoon, Sci. Rep. 9, 7334 (2019)

  10. 10.

    S. Masudy-Panah, R. Siavash Moakhar, C.S. Chua, H.R. Tan, T.I. Wong, D. Chi, G.K. Dalapati, ACS Appl. Mater. Interfaces 8, 1206 (2016)

  11. 11.

    D. Wu, Q. Zhang, M. Tao, Phys. Rev. B 73, 235206 (2006)

  12. 12.

    F. Gao, X.J. Liu, J.S. Zhang, M.Z. Song, N. Li, J. Appl. Phys 111, 084507 (2012)

  13. 13.

    J. Liang, N. Kishi, T. Soga, T. Jimbo, M. Ahmed, Thin Solid Films 520, 2679 (2012)

  14. 14.

    X. Zhang, D. Zhang, X. Ni, H. Zheng, Solid State Electron. 52, 245 (2008)

  15. 15.

    T.S. Tripathi, I. Terasaki, M. Karppinen, J. Phys. Condens. Matter 28, 475801 (2016)

  16. 16.

    Y. Akaltun, Thin Solid Films 594, 30 (2015)

  17. 17.

    J. Sultana, S. Paul, A. Karmakar, G.K. Dalapati, S. Chattopadhyay, J. Mater. Sci. 29, 12878 (2018)

  18. 18.

    S. Lee, W.Y. Lee, B. Jang, T. Kim, J.H. Bae, K. Cho, S. Kim, J. Jang, IEEE Electron. Dev. Lett. 39, 47 (2018)

  19. 19.

    T. DIxit, A. Tripathi, K.L. Ganapathi, I.A. Palani, M.S. Ramachandra Rao, V. Singh, IEEE Electron. Dev. Lett. 40, 255 (2019)

  20. 20.

    J. Sultana, A. Das, A. Das, N.R. Saha, A. Karmakar, S. Chattopadhyay, Thin Solid Films 612, 331 (2016)

  21. 21.

    Z. Hubička, M. Zlámal, M. Čada, M. Kment, J. Krýsa, Catal. Today 328, 29 (2019)

  22. 22.

    A. Nalbant, Ö. Ertek, I. Okur, Mater. Sci. Eng. 178, 368 (2013)

  23. 23.

    Y. Alajlani, F. Placido, A. Barlow, H.O. Chu, S. Song, S. Ur Rahman, R. De Bold, D. Gibson, Vacuum 144, 217 (2017)

  24. 24.

    H.S. Kim, M. Patel, P. Yadav, J. Kim, A. Sohn, D.W. Kim, Appl. Phys. Lett. 109, 101902 (2016)

  25. 25.

    L. Radjehi, A. Djelloul, M. Bououdina, R. Siab, W. Tebib, Appl. Phys. A 124, 723 (2018)

  26. 26.

    H.C. Lu, C.L. Chu, C.Y. Lai, Y.H. Wang, Thin Solid Films 517, 4408 (2009)

  27. 27.

    D. Tahir, S. Tougaard, J. Phys. Condens. Matter 24, 175002 (2012)

  28. 28.

    Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y.P. Chen, F. Soldera, D. Horwat, F. Mücklich, J.F. Pierson, Phys. Rev. B 94, 245418 (2016)

  29. 29.

    W. Zheng, Y. Chen, X. Peng, K. Zhong, Y. Lin, Z. Huang, Materials (Basel). 11, 1253 (2018)

  30. 30.

    N.W. Sangwaranatee, N. Sangwaranatee, M. Horprathum, C. Chananonnawathorn, E. Sustini, Mater. Today Proc. 5, 15198 (2018)

  31. 31.

    S. Sai Guru Srinivasan, B. Govardhanan, P. Aabel, M. Ashok, M.C. Santhosh Kumar, Sol. Energy 187, 368 (2019)

  32. 32.

    N. Sangwaranatee, C. Chananonnawathorn, M. Horprathum, Mater. Today Proc. 5, 13896 (2018)

  33. 33.

    Ş. Korkmaz, B. Geçici, S.D. Korkmaz, R. Mohammadigharehbagh, S. Pat, S. Özen, V. Şenay, H.H. Yudar, Vacuum 131, 142 (2016)

  34. 34.

    S. Michotte, J. Proost, Sol. Energy Mater. Sol. Cells 98, 253 (2012)

  35. 35.

    J. Proost, F. Henry, R. Tuyaerts, S. Michotte, J. Appl. Phys. 120, 075308 (2016)

  36. 36.

    J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J. Raman Spectrosc. 30, 413 (1999)

  37. 37.

    V.S. Levitskii, V.I. Shapovalov, A.E. Komlev, A.V. Zav’yalov, V.V. Vit’ko, A.A Komlev, E.S. Shutova, Tech. Phys. Lett. 41, 1094 (2015)

  38. 38.

    A.S. Reddy, H.H. Park, V.S. Reddy, K.V.S. Reddy, N.S. Sarma, S. Kaleemulla, S. Uthanna, P.S. Reddy, Mater. Chem. Phys. 110, 397 (2008)

  39. 39.

    I. Studenyak, M. Kranj, M. Kurik, Int. J. Opt. Appl. 4, 76 (2014)

  40. 40.

    B. Giroire, M. Ali Ahmad, G. Aubert, L. Teule-Gay, D. Michau, J.J. Watkins, C. Aymonier, A. Poulon-Quintin, Thin Solid Films 643, 53 (2017)

  41. 41.

    S. Masudy-Panah, R. Siavash Moakhar, C.S. Chua, A. Kushwaha, T.I. Wong, G.K. Dalapati, RSC Adv. 6, 29383 (2016)

  42. 42.

    M. Zhukova, R. Kotipalli, O. Poncelet, L. Samain, L. Fourdrinier, D. Flandre, Optimization of optoelectrical properties of DC magnetron sputtered Cu2ZnSnS4 absorber layer (in E-MRS (European Materials Research Society) 2019-Spring Meeting). https://hdl.handle.net/2078.1/218948. Accessed 17 Dec 2019

  43. 43.

    J. Kaur, R. Singh, Surf. Rev. Lett. 25, 1950029 (2018)

  44. 44.

    R.D. Prabu, S. Valanarasu, I. Kulandaisamy, V. Ganesh, M. Shkir, A. Kathalingam, J. Mater. Sci. 28, 6754 (2017)

Download references

Acknowledgements

This work is financially supported by China Scholarship Council and Université Catholique de Louvain Co-Funding Fellowship (No. CSC201806130158).

Author information

Correspondence to Xi Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Zhukova, M., Faniel, S. et al. Structural and Opto-electronic characterization of CuO thin films prepared by DC reactive magnetron sputtering. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03007-4

Download citation