Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The photoluminescence adjustment of red phosphors ANaWO2F4:Mn4+ (A = Li, Na, K) by suitable tolerance factor designing


Mn4+-activated perovskite-structured ANaWO2F4 (A = Li, Na, K) red phosphors were successfully prepared by a facile co-precipitation method. By changing the A-site ions, the tolerance factor (t) of host material ANaWO2F4 became adjustable. Red emissions in LiNaWO2F4:Mn4+, Na2WO2F4:Mn4+ and KNaWO2F4:Mn4+ were found to be gradually increased. The relationship between the structure and their photoluminescence properties was discussed. The results suggested that a t-dependent photoluminescence behavior may exist in perovskite-structured phosphors. As the tolerance factor increases, the emission intensity of ANaWO2F4 (A = Li, Na, K) red phosphors increases. This work also provides a reference for the exploration and optimization of Mn4+-activated perovskite-structured red phosphors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Q. Zhang, X. Wang, X. Ding, Y. Wang, A potential red-emitting phosphor BaZrGe3O9:Eu3+ for WLED and FED applications: synthesis, structure, and luminescence properties. Eur. J. Inorg. Chem. 56, 6990 (2017)

  2. 2.

    L. Huang, Y. Liu, J. Yu, Y. Zhu, F. Pan, T. Xuan, M.G. Brik, C. Wang, J. Wang, Highly stable K2SiF6:Mn4+@K2SiF6 composite phosphor with narrow red emission for white LEDs. ACS Appl. Mater. 10, 18082 (2018)

  3. 3.

    J.S. Hou, W.Z. Jiang, Y.Z. Fang, F.Q. Huang, Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2:Ce3+, Eu2+, Eu3+ phosphor. J. Mater. Chem. C 1, 5892 (2013)

  4. 4.

    P.F. Li, L. Wondraczek, M.Y. Peng, Q.Y. Zhang, Tuning Mn4+ red photoluminescence in (K, Rb)2Ge4O9:Mn4+ solid solutions by partial alkali substitution. A Setlur. J. Am. Ceram. Soc. 99, 3376 (2016)

  5. 5.

    J. Wang, H.R. Zhang, Y.L. Liu, H.W. Dong, B.F. Lei, M.T. Zheng, Y. Xiao, M.Y. Peng, J. Wang, Insights into luminescence quenching and detecting trap distribution in Ba2Si5N8:Eu2+ phosphor with comprehensive considerations of temperature-dependent luminescence behaviors. J. Mater. Chem. C 3, 9572 (2015)

  6. 6.

    M.H. Fang, W.L. Wu, Y. Jin, Y. Jin, T. Lesniewski, S. Mahlik, M. Grinberg, M.G. Brik, Control of luminescence by tuning of crystal symmetry and local structure in Mn4+-activated narrow band fluoride phosphors. Angew. Chem. Int. Ed. 57, 1797 (2018)

  7. 7.

    E. Song, Y. Zhou, X.B. Yang, Z. Liao, W. Zhao, T. Deng, L. Wang, Y. Ma, S. Ye, Q. Zhang, Highly efficient and stable narrow-band red phosphor Cs2SiF6:Mn4+ for high-power warm white LED applications. ACS Photon. 4, 2556 (2017)

  8. 8.

    L. Lv, C. Zhen, G. Liu, S. Huang, Y. Pan, Optimized photoluminescence of red phosphor K2TiF6:Mn4+ synthesized at room temperature and its formation mechanism. J. Mater. Chem. C 3, 1935 (2015)

  9. 9.

    L. Wei, C.C. Lin, Y. Wang, M. Fang, H. Jiao, R. Liu, Photoluminescent evolution induced by structural transformation through thermal treating in the red Narrow-Band phosphor K2GeF6:Mn4+. ACS Appl. Mater. Interfaces 7, 10656 (2015)

  10. 10.

    M. Kim, W.B. Park, J. Lee, C.H. Kim, S.P. Singh, K. Sohn, Rb3SiF7:Mn4+ and Rb2CsSiF7:Mn4+ red-emitting phosphors with a faster decay rate. Chem. Mater. 30, 6936–6944 (2018)

  11. 11.

    Z. Liang, Z. Yang, H. Tang, J. Guo, Z. Yang, Q. Zhou, Synthesis, luminescence properties of a novel oxyfluoride red phosphor BaTiOF4: Mn4+ for LED backlighting. Opt. Mater. 90, 89 (2019)

  12. 12.

    J. Hou, X. Yin, Y. Fang, F. Huang, W. Jiang, Novel red-emitting perovskite-type phosphor CaLa1xMgM′O6: xEu3+ (M′ = Nb, Ta) for white LED application. Opt. Mater. 34, 1394 (2012)

  13. 13.

    X. Yin, Y. Wang, F. Huang, Y. Xia, D. Wan, J. Yao, Excellent red phosphors of double perovskite Ca2LaMO6: Eu (M = Sb, Nb, Ta) with distorted coordination environment. J. Solid State Chem. 184, 3324 (2011)

  14. 14.

    M.C. Knapp, P.M. Woodward, A-site cation ordering in AA′BB′O6 perovskites. J. Solid State Chem. 179, 1076–1085 (2006)

  15. 15.

    J.B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, T. Graf, M.S. Brandt, J. Simon, T. Walther, W. Mader, D. Topwal, D.D. Sarma, Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A= Sr, Ba, and Ca). Phys. Rev. B 68, 144431 (2003)

  16. 16.

    J. Hou, X. Yin, F. Huang, Synthesis and photoluminescence properties of NaLaMgWO6: RE3+ (RE = Eu, Sm, Tb) phosphor for white LED application. Mater. Res. Bull. 47, 1295–1300 (2012)

  17. 17.

    G. King, L.M. Wayman, P.M. Woodward, Magnetic and structural properties of NaLnMnWO6 and NaLnMgWO6 perovskites. J. Solid State Chem. 182, 1319–1325 (2009)

  18. 18.

    G.F. Han, H.D. Hadi, A. Bruno, Additive selection strategy for high performance perovskite photovolataic. J. Phys. Chem. C 122, 13884 (2017)

  19. 19.

    P.M. Da, G.F. Zheng, Tailoring interface of lead-halide perovskite solar cells. Nano Res. 10, 1471 (2017)

  20. 20.

    C.D. Brandle, V.J. Fratello, Preparation of perovskite oxides for high Tc superconductor substrates. J. Mater. Res. 5, 2160–2164 (1990)

  21. 21.

    G. King, P.M. Woodward, Cation ordering in perovskites. J. Mater. Chem. 20, 5785–5796 (2010)

  22. 22.

    R. Verstraete, H.F. Sijbom, J.J. Joos, K. Korthout, D. Poelman, C. Detavernier, P.F. Smet, Red Mn4+-doped fluoride phosphors: why purity matters. ACS Appl. Mater. Interfaces 10, 18845 (2018)

  23. 23.

    R.A.F. Pinlac, C.L. Stern, K.R. Poeppelmeier, New layered oxide-fluoride perovskites: KNaNbOF5 and KNaMO2F4 (M = Mo6+, W6+). Crystals 1, 3 (2011)

  24. 24.

    T. Hu, H. Lin, Y. Cheng, Q. Huang, J. Xu, Y. Gao, J. Wang, Y. Wang, A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn4+-activated oxyfluoride Na2WO2F4. J. Mater. Chem. C 5, 10524–10532 (2017)

  25. 25.

    R. Chatterjee, S. Saha, D. Sen, K. Panigrahi, U.K. Ghorai, G.C. Das, K.K. Chattopadhyay, Neutralizing the charge imbalance problem in Eu3+-activated BaAl2O4 nanophosphors: theoretical insights and experimental validation considering K+ codoping. ACS Omega 3, 788–800 (2018)

  26. 26.

    F. Liu, Y. Fang, J. Hou, N. Zhang, Z. Ma, Garnet-based red emitting phosphors Li6MLa2Nb2O12:Eu3+(M=Ca, Sr, Ba): photoluminescence improvement by changing crystal lattice. Ceram. Int. 40, 3237–3241 (2014)

  27. 27.

    S. Zhang, H. Wei, Y. Zhou et al., Green synthesis of K2TiF6: Mn4+ using KHF2 as accessory ingredient: a novel airtight solid-state strategy. Opt. Mater. 86, 165–171 (2018)

  28. 28.

    H. Ming, J. Zhang, L. Liu, J. Peng, F. Du, X. Ye, Y. Yanga, H. Nie, A novel Cs2NbOF5:Mn4+ oxyfluoride red phosphor for light-emitting diode devices. Dalton. Trans. 47, 16048 (2018)

  29. 29.

    K. Panigrahi, S. Saha, S. Sain, R. Chatterjee, A. Das, U.K. Ghorai, N.S. Das, K.K. Chattopadhyay, White light emitting MgAl2O4:Dy3+, Eu3+ nanophosphor for multifunctional applications. Dalton Trans. 47, 12228–12242 (2018)

  30. 30.

    A. Das, S. Saha, K. Panigrahi, Enhanced photoluminescence properties of low-dimensional Eu3+-Activated Y4Al2O9 phosphor compared to bulk for solid-state lighting applications and latent fingerprint detection-based forensic applications. Microsc. Microanal. 26, 1–9 (2019)

  31. 31.

    K.K. Chattopadhyay, A. Das, S. Saha, K. Panigrahi, A. Mitra, R. Chatterjee, U.K. Ghorai, B. Das, Morphology control and photoluminescence properties of Eu3+-activated Y4Al2O9 nanophosphors for solid state lighting applications. CrystEngComm 20, 2540–2552 (2018)

  32. 32.

    A. Santra, K. Panigrahi, S. Saha, N. Mazumder, A. Ghosh, S. Bakuli, K.K. Chattopadhyay, U.K. Ghorai, Enhancement of radiative transitions in Sm3+ activated CaTiO3 nanophosphor by modulating co-activator concentration. J. Mater. Sci. Mater. El. 30, 6311–6321 (2019)

Download references


Meiqing Hu and Zhifu Liu have equally contributed to this work. This work is financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51672177, 51902203, 61605115), Program of Shanghai Academic/Technology Research Leader (19XD1434700).

Author information

Correspondence to Yongzheng Fang or Jingshan Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Liu, Z., Xia, Y. et al. The photoluminescence adjustment of red phosphors ANaWO2F4:Mn4+ (A = Li, Na, K) by suitable tolerance factor designing. J Mater Sci: Mater Electron (2020).

Download citation