Dopant incited alterations in structural, morphological, optical, and dielectric properties of Er-doped LaCrO3

  • Naima Zarrin
  • Shahid HusainEmail author
  • Desh Deepak Gaur
  • Anand Somvanshi
  • Mehroosh Fatema


The crystalline samples of La1−xErxCrO3 (x = 0.0, 0.2, 0.4, 0.6) system have been synthesized through the sol–gel process. The XRD pattern of the pristine LaCrO3 displays the single-phase characteristics having orthorhombic crystal structure with Pnma space group. On the other hand, the Er-doped samples exhibit the mixed-phase attributes of both parent and ErCrO3 compounds. The structural alteration from LaCrO3 to ErCrO3 increases with the increase in doping content. The escalation in the Er doping amount leads to a decline in the crystallite size and unit cell volume. TEM analysis verifies that the particle size reduces from 423 to 328 nm, as the content of Er in the crystal lattice is increased. The UV/Vis spectroscopy specifies that the energy band gap (Eg) values rise slightly with the increment in the doping quantity of Er in the LaCrO3. The Urbach energy is also found to increase in the doped samples. The effect of Er doping on optical constants namely refractive index, extinction coefficient, and optical conductivity has been investigated. The study on dielectric parameters infers that the dielectric constant and loss tangent (tanδ) display the typical dispersive behavior attributed to the Maxwell–Wagner interfacial polarization. These samples follow the UDR model only in the high-frequency regime. The electric modulus exploration ascertained that grains are mainly involved in the conduction process in these samples. The frequency-dependent ac conductivity plot indicated that these samples follow the Jonscher empirical power law in the given frequency range.



  1. 1.
    T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells (Springer, New York, 2009)CrossRefGoogle Scholar
  2. 2.
    M.F.M. Zwinkels, O. Haussner, P.G. Menon, S.G. Jaras, Catal. Today 47, 73–82 (1999)CrossRefGoogle Scholar
  3. 3.
    A. Lund, T. Jacobsen, K.V. Hansen, M. Mogensen, J. Solid State Electrochem. 16, 2113–2120 (2012)CrossRefGoogle Scholar
  4. 4.
    K. Sardar, M.R. Lees, R.J. Kashtiban, J. Sloan, R.I. Walton, Chem. Matter. 23, 48–56 (2011)CrossRefGoogle Scholar
  5. 5.
    V.D. Nithya, R.J. Immanuel, S.T. Senthilkumar, C. Sanjeeviraja, I. Perelshtein, D. Zitoun, R.K. Selvan, Mater. Res. Bull. 47, 1861–1868 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Gupta, M.K. Mahapatra, P. Singh, Mater. Sci. Eng. R 90, 1–36 (2015)CrossRefGoogle Scholar
  7. 7.
    J.S. Zhou, J.A. Alonso, A. Muonz, M.T. Fernandez-Dıaz, J.B. Goodenough, Phys. Rev. Lett. 106, 057201 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Mukherje, M.R. Gonal, M.K. Patel, M. Roy, A. Patra, A.K. Tyagi, J. Am. Ceram. Soc. 95, 290–295 (2012)CrossRefGoogle Scholar
  9. 9.
    H.P.S. Correa, C.O. Paiva-Santos, L.F. Setz, L.G. Martinez, S.R.H. Mello-Castanho, M.T.D. Orlando, Powder Diffr. 23, 18–22 (2008)CrossRefGoogle Scholar
  10. 10.
    W.C. Koehler, E.O. Wollan, J. Phys. Chem. Solids 2100 (1957)Google Scholar
  11. 11.
    K.P. Ong, P. Blaha, P. Wu, Phys. Rev. B 77, 073102 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, J. Alloys Compd. 740, 1012–1023 (2018)CrossRefGoogle Scholar
  13. 13.
    R. Shukla, J. Manjanna, A.K. Bera, S.M. Yusuf, A.K. Tyagi, Inorg. Chem. 48, 11691–11696 (2009)CrossRefGoogle Scholar
  14. 14.
    L.M. Daniels et al., Inorg. Chem. 52, 12161–12169 (2013)CrossRefGoogle Scholar
  15. 15.
    N.Q. Minh, J. Amer. Ceram. Soc. 76, 563–588 (1993)CrossRefGoogle Scholar
  16. 16.
    A. Weber, E.I. Tiffee, J. Power Sources 127, 273–283 (2004)CrossRefGoogle Scholar
  17. 17.
    A.S. Anokhin, S.S. Strelnikova, N.T. Andrianov, N.A. Makarov, D.A. Zhirov, K.A. Solntsev, Inorg. Mater. 49(9), 935–938 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Mukherjee, M.R. Gonal, M.K. Patel, M. Roy, A. Patra, A.K. Tyagi, J. Am. Ceram. Soc. 95, 290–295 (2012)CrossRefGoogle Scholar
  19. 19.
    S.M. El-Sheikh, M.M. Rashad, J. Alloys Compd. 496, 723–732 (2010)CrossRefGoogle Scholar
  20. 20.
    L.M. Daniels, M.C. Weber, M.R. Lees, M. Guennou, R.J. Kashtiban, J. Sloan, J. Kreisel, R.I. Walton, Inorg. Chem. 52, 12161–12169 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Shi, S. Yin, M.S. Seehra, M. Jain, J. Appl. Phys. 123, 193901 (2018)CrossRefGoogle Scholar
  22. 22.
    L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, J. Appl. Cryst. 32, 36–50 (1999)CrossRefGoogle Scholar
  23. 23.
    A. Wrzesinska, A. Khort, I. Bobowska, A. Busiakiewicz, A. Wypych-Puszkarz, J. Nanomater. 2019, 11 (2019)CrossRefGoogle Scholar
  24. 24.
    N. Zarrin, S. Husain, W. Khan, S. Manzoor, J. Alloys Compd. 784, 541–555 (2019)CrossRefGoogle Scholar
  25. 25.
    W.W. Wendlandt, H.G. Hecht, Reflectance Spectroscopy, (Wiley Interscience, New York, 1966) p. 80Google Scholar
  26. 26.
    N. Zarrin, S. Husain, Appl. Phys. A 124, 730 (2018)CrossRefGoogle Scholar
  27. 27.
    J. Tauc, R. Grigorvici, A. Vancu, Phys. Status Solidi (b) 15, 627 (1966)CrossRefGoogle Scholar
  28. 28.
    P. Gupta, M. Ramrakhiani, Open Nanosci. J. 3, 15–19 (2009)CrossRefGoogle Scholar
  29. 29.
    S.M. Wasim, G. Marın, C. Rincon, P. Bocaranda, G. Sanchez Perez, J. Phys. Chem. Solid 61(5), 669–673 (2000)CrossRefGoogle Scholar
  30. 30.
    G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47(20), 1480 (1981)CrossRefGoogle Scholar
  31. 31.
    H. Sumi, Y. Toyozawa, J. Phys. Soc. Jpn. 31(2), 342–358 (1971)CrossRefGoogle Scholar
  32. 32.
    N. Ahmad, S. Khan, J. Alloys Compd. 720, 502–509 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Nashim, K.M. Parida, J. Mat. Chem. A 2, 18405 (2014)CrossRefGoogle Scholar
  34. 34.
    A.A. Akl, Appl. Surf. Sci. 256, 7496 (2010)CrossRefGoogle Scholar
  35. 35.
    D.P. Gosain, T. Shimizu, M. Suzuki, T. Bando, S. Okano, J. Mater. Sci. 26, 3271 (1991)CrossRefGoogle Scholar
  36. 36.
    F. Duanand, J. Guojun, Introduction to Condensed Matter Physics, (World Scientific Publishing Company, Hackensack, 2005)Google Scholar
  37. 37.
    K.W. Wagner, Ann. Phys. 345, 817 (1913)CrossRefGoogle Scholar
  38. 38.
    J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1982)Google Scholar
  39. 39.
    C.G. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  40. 40.
    H.M. Chenari, M.M. Golzan, H. Sedghi, A. Hassanzadeh, M. Talebian, Curr. Appl. Phys. 11, 1071–1076 (2011)CrossRefGoogle Scholar
  41. 41.
    J. Yanmin, H. Luo, S.W. Or, Y. Wang, H.L.W. Chan, J. Appl. Phys. 105, 124109 (2009)Google Scholar
  42. 42.
    N. Zarrin, S. Husain, S. Sharma, A. Somvanshi, S. Manzoor, W. Khan, J. Phys. Chem. Solids, 26, 109281 (2019)CrossRefGoogle Scholar
  43. 43.
    J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70(14), 144106 (2004)CrossRefGoogle Scholar
  44. 44.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850–3856 (1989)CrossRefGoogle Scholar
  45. 45.
    J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812–2819 (2003)CrossRefGoogle Scholar
  46. 46.
    S.A. Makhlouf, Z.H. Bakr, K.I. Aly, M.S. Moustafa, Superlattices Microstruct. 64, 107–117 (2013)CrossRefGoogle Scholar
  47. 47.
    P. Choudhary, D. Varshney, Solid State Commun. 271, 89–96 (2018)CrossRefGoogle Scholar
  48. 48.
    A.K. Jonscher, Nature 253, 717 (1975)CrossRefGoogle Scholar
  49. 49.
    R.S. Devan, B.K. Chougule, J. Appl. Phys. 101, 014109 (2007)CrossRefGoogle Scholar
  50. 50.
    P. Kofstad, in Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, ed. by R.E. Krieger (Publishing Co., Malabar, FL, 1983), pp. 15–21Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of PhysicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations