We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Advertisement

Induced ferromagnetism and enhanced optical behaviour in indium-doped barium stannate system

  • 30 Accesses

Abstract

Structural, morphological, optical and magnetic properties of chemically synthesized Indium-doped BaSnO3 (BSO) nanostructures were investigated. XRD results indicated cubic structure from Rietveld refinements and FT-IR studies confirmed the characteristic vibrations for all doped compounds. The presence of oxygen vacancies were derived from the defect-induced Raman modes. Surface morphological studies by HR-SEM showed a significant change from pseudo-cuboids to mixed rods. The presence of oxygen vacancies, oxidation states and elements (Ba, Sn, O and In) were studied by X-ray Photoelectron spectroscopy. UV–Vis and Photoluminescence studies demonstrated a decreasing tendency in bandgap values and the presence of defect states. Interesting defect sites and F-centres were probed by Electron paramagnetic resonance studies. A transition from diamagnetic to ferromagnetic behaviour observed from room temperature magnetic measurements was explained based on F-centre exchange interaction.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    H. Kageyama, K. Hayashi, K. Maeda, J.P. Attfield, Z. Hiroi, J.M. Rondinelli, K.R. Poeppelmeier, Nat. Commun. 8, 772 (2018)

  2. 2.

    K. James, A. Aravind, M. Jayaraj, Appl. Surf. Sci. 282, 121–125 (2013)

  3. 3.

    C. Shan, T. Huang, J. Zhang, M. Han, Y. Li, Z. Hu, J. Chu, J. Phys. Chem. C 118, 6994–7001 (2014)

  4. 4.

    R. Cava, B. Batlog, J.J. Krajewski, R. Farrow, L. Rupp, A. White, K. Short, W. Peck, T. Kometani, Nature 332, 814–816 (1988)

  5. 5.

    P.A. Lee, N. Nagosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)

  6. 6.

    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

  7. 7.

    S. Raghavan, T. Schumann, H. Kim, J.Y. Zhang, T.A. Cain, S. Stemmer, APL Mater. 4, 016106 (2006)

  8. 8.

    Y. Zhang, H. Zhang, Y. Wang, W.F. Zhang, J. Phys. Chem. C 112, 8553–8557 (2008)

  9. 9.

    L. Zhu, Z. Shao, J. Ye, X. Zhang, X. Pan, S. Dai, Chem. Commun 52, 970 (2016)

  10. 10.

    M.R. Manju, V.P. Kumar, V. Dayal, Phys B 500, 14–19 (2016)

  11. 11.

    L. Quinzhuang, H. Yunhua, L. Hong, L. Bing, G. Guanyin, F. Lele, D. Jianming, Appl. Phys. Express 7, 033006 (2014)

  12. 12.

    U.S. Alaan, P. Shafer, A.T. N’Diaye, E. Arenholz, Y. Suzuki, Appl. Phys. Lett. 108, 042106 (2016)

  13. 13.

    M.R. Manju, K.S. Ajay, N.M. D’Souza, S. Hunagund, R. Hadimani, D.V. Dayal, J. Magn. Magn. Mater. 452, 23–29 (2018)

  14. 14.

    D.J. Singh, Q. Xu, K.P. Ong, Appl. Phys. Lett. 104, 011910 (2014)

  15. 15.

    N. Rajamanickam, P. Soundararajan, S.M. Senthilkumar, K. Jayakumar, K. Ramachandran, Electrochim. Acta 296, 771–782 (2018)

  16. 16.

    P.H. Borse, U.A. Joshi, Sang Min Ji, Jum Suk Jang and Jae Sung lee. Appl. Phys. Lett. 90, 034103 (2007)

  17. 17.

    Y. Li, H. Yang, J. Tian, Hu Xianolin, H. Cui, RSC Adv. 7, 11503–11509 (2017)

  18. 18.

    M. Tahir, N.A.S. Amin, Appl. Catal B 162, 98–109 (2015)

  19. 19.

    T.R. Sobahi, M.S. Amin, R.M. Mohamed, Appl. Nanosci. 8, 557–565 (2018)

  20. 20.

    A. Murali, P.K. Saraswat, H.Y. Sohn, Mater. Today Chem. 11, 60–68 (2019)

  21. 21.

    S. Singh, N. Jahan, A. Khanna, G.S. Lotey, N.K. Verma, Chalcogenide Lett 2, 73–78 (2012)

  22. 22.

    C. Dong, J. Appl. Crystallogr. 32, 838–839 (2009)

  23. 23.

    H.M. Rietveld, J. Appl. Crystallogr 2, 65–71 (1969)

  24. 24.

    A. C. Larson, and R. B. Von Dreele, L. Alamos, National Laboratory Report No. LAUR 86–748 (1994).

  25. 25.

    A.L. Patterson, Phys. Rev 56, 978–982 (1939)

  26. 26.

    L. Li, M. Wang, D. Guo, Fu Ruixue, Q. Meng, J. Electroceram. 30, 129–132 (2013)

  27. 27.

    D.R. Lide, Crystallogr. Rev. 15, 223–224 (2009)

  28. 28.

    N. Rajamanickam, K. Jayakumar, K. Ramachandran, J. Mater. Sci. Mater. Electron. 29, 19880–19888 (2018)

  29. 29.

    S.L. Angel, K. Deepa, N. Rajamanickam, K. Jayakumar, K. Ramachandran, AIP Conf. Proc. 1942, 050004 (2018)

  30. 30.

    K. Momma, F. Izumi, J. Appl. Crystallogr 41, 653–658 (2008)

  31. 31.

    G.K. Williamson, W.H. Hall, Acta. Metall 1(1), 22–31 (1953)

  32. 32.

    M. Muralidharan, V. Anbarasu, A.E. Perumal, K. Sivakumar, J. Mater. Sci. Mater. Electron 26, 6875–6886 (2015)

  33. 33.

    W.H. Rothery, G.V. Raynor, The Structure of Metals and Alloys (Richard Clay Publications, Suffolk, 1962)

  34. 34.

    J. Anthoniappen, C.S. Tu, P.Y. Chen, C.S. Chen, Y.U. Idzerda, S.J. Chiu, J. Eur. Ceram. Soc 35, 3495–3506 (2015)

  35. 35.

    S. Omeri, G. Rekhila, M. Trari, Y. Bessekhouad, J. Solid State Electrochem. 19, 1651–1658 (2015)

  36. 36.

    A.S. Deepa, S. Vidya, P.C. Manu, S. Solomon, A. John, J.K. Thomas, J. Alloys. Compd. 509(5), 1830–1835 (2011)

  37. 37.

    U. Kumar, M.J. Ansareee, A.K. Verma, S. Upadhyay, G. Gupta, Mater. Res. Express. 4, 116304 (2017)

  38. 38.

    S. Sumithra, N.V. Jaya, J. Supercond. Nov. Magn 31, 2777 (2018)

  39. 39.

    D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman Spectrosc. 10(1), 253–290 (1981)

  40. 40.

    Bilbao Crystallographic Server, https://www.cryst.ehu.es.

  41. 41.

    K. Balamurugan, N.H. Kumar, J.A. Chelvane, P.N. Santhosh, Phys. B 407(13), 2519–2523 (2012)

  42. 42.

    A. Anderson (ed.), The Raman Effect: Principles, 1 (Marcel Dekker Inc., New York, 1971)

  43. 43.

    K. Balamurugan, E.S. Kumar, B. Ramachandran, S. Venkatesh, N.H. Kumar, M.S.R. Rao, P.N. Santhosh, J. Appl. Phys. 111, 074107 (2012)

  44. 44.

    P. Tarte, A. Rulmont, M. Liegeoiss-Duyckaerts, R. Chay, J.M. Winand, Solid. State. Ion. 42, 177–196 (1990)

  45. 45.

    S. Saravanakumar, D. Sivaganesh, K.S.S. Ali, M.C. Robert, M.P. Rani, R. Chokkalingam, R. Saravanan, Phys. B 545, 134–140 (2018)

  46. 46.

    S. Saravanakumar, A. Escobedo-Morales, U. Pal, R.J. Aranda, R. Saravanan, J. Mater. Sci. 49, 5529–5536 (2014)

  47. 47.

    S. Sumithra, N.V. Jaya, Phys B 493, 35–42 (2016)

  48. 48.

    N. Rajamanickam, P. Soundarrajan, K. Jayakumar, K. Ramachandran, Sol. Energy Mater Sol. Cells 166, 69–77 (2017)

  49. 49.

    D.L. Wood, J. Tauc, Phys. Rev. B 5(8), 3144–3151 (1972)

  50. 50.

    H. Mizoguchi, P. Chen, P. Boolchand, V. Ksenofontov, C. Felser, P.W. Barnes, P.M. Woodward, Chem. Mater. 25, 3858–3866 (2015)

  51. 51.

    D.D.K. Patel, A. Sengupta, B. Vishwanadh, V. Sudarshan, R.K. Vasta, R. Kadam, S.K. Kulshreshta, Eur. J. Inorg. Chem. 10, 1609–1619 (2012)

  52. 52.

    R. Payling, P. Larkins, Optical Emission Lines of Elements, 1st edn. (Wiley, New York, 2000)

  53. 53.

    Q. Yang, L. Lou, G. Wang, Phys. Status Solidi B 255, 1700651 (2018)

  54. 54.

    J.A.M. Van Roosmalen, E.H.P. Cordfunke, R.B. Helmholdt, J. Solid. State. Chem 110, 100–105 (1995)

  55. 55.

    D. Block, A. Herve, R.T. Cox, Phys. Rev. B 25, 6049 (1982)

  56. 56.

    Da-Yong Lu and Ting Ting Liu, J. Alloys. Compd 698, 967–976 (2017)

  57. 57.

    T. Koladiazhnyi, A. Petric, J. Phys. Chem. Solids 64, 953–960 (2003)

  58. 58.

    M. Avinash, M. Muralidharan, K. Sivaji, Phys. B 570, 157–165 (2019)

  59. 59.

    J. Philp, A. Punnose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P.R. LeClair, T.S. Santos, J.S. Moodera, Nat. Mater. 5, 298–304 (2006)

  60. 60.

    J.M.D. Coey, S.A. Chambers, MRS Bull. 33, 1053–1058 (2008)

  61. 61.

    K. Balamurugan, N.H. Kumar, B. Ramachandran, M.S.R. Rao, J.A. Chelvane, P.N. Santhosh, Solid State Commun. 149, 884–887 (2009)

  62. 62.

    A.C. Durst, R.N. Bhatt, P.A. Wolff, Phys. Rev. B 65, 235205 (2002)

  63. 63.

    S. Chattopadhyay, S.K. Neogi, A. Sarkar, M.D. Mukadam, S.M. Yusuf, A. Banerjee, S. Bandyopadhyay, J. Magn. Magn. Mater. 323, 363–368 (2011)

  64. 64.

    C. Kursun, M. Gogebakan, E. Uludag, M.S. Bozgeyik, F.S. Uludag, Sci. Rep. 8, 13083 (2018)

Download references

Acknowledgement

AM acknowledges the University of Madras for University Research Fellowship (URF). MM acknowledges the financial support by DST-SERB for National Post Doctoral Fellowship (PDF 2016/000372). Authors are grateful to Central Instrumentation Facility (CIF), University of Madras and UGC-DAE-CSR, Kalpakkam Node for various measurements.

Author information

Correspondence to K. Sivaji.

Ethics declarations

Conflict of interest

There is no conflict of interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avinash, M., Muralidharan, M., Selvakumar, S. et al. Induced ferromagnetism and enhanced optical behaviour in indium-doped barium stannate system. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-02886-x

Download citation