Radiation tolerance, charge trapping, and defect dynamics studies of ALD-grown Al/HfO2/Si nMOSCAPs

  • N. ManikanthababuEmail author
  • T. Basu
  • S. Vajandar
  • S. V. S. Nageswara Rao
  • B. K. Panigrahi
  • T. Osipowicz
  • A. P. PathakEmail author


The radiation response, long-term performance, and reliability of HfO2-based gate dielectric materials play a critical role in metal oxide semiconductor (MOS) technology for space device applications. Al/HfO2/Si atomic layer-deposited devices were irradiated by gamma and swift heavy ions. An increase in the leakage current and charge trapping has been observed as the gamma irradiation dose varied from 25 to 100 krad. The density of oxide traps is found to increase with an increase in the gamma dose while the interface trap density is found to decrease. Another set of samples were irradiated by 120 MeV Au ions to study the SHI-induced defect annealing/creation of defects and intermixing effects in HfO2/Si-based devices. The formation of an interfacial layer of HfSiO at a fluence of at 5 × 1013 cm−2 is revealed by X-ray reflectivity analysis. The densities of interface- and oxide-trapped charges are found to decrease up to a critical fluence of 1 × 1012 cm−2 and then increase with further increase in fluence to 5 × 1013 cm−2. The presence of the interlayer, due to the swift heavy ion-induced intermixing, has been confirmed by X-ray photoelectron spectroscopy measurements. Various current conduction mechanisms in both substrate and gate injection cases were used to understand the basic mechanisms of direct, Fowler–Nordheim, and Poole–Frenkel tunneling, as well as Schottky emission in these devices. These studies elucidated the radiation tolerance and charge-trapping behavior of Al/HfO2/Si nMOS capacitors.



We thank Mr. Vinayak Vats, Aixtron Inc., USA, for providing the samples. NMB thanks SERB for fellowship through NPDF scheme (PDF/2016/000748). The financial support and the access to national experimental facilities through collaborative research projects by IUAC, New Delhi, and UGC-DAE-CSR, Kolkata, are greatly appreciated. We thank CFN and UoH for providing access to necessary experimental facilities.


  1. 1.
    J. Felix, J. Schwank, D. Fleetwood, M. Shaneyfelt, E. Gusev, Microelectron. Reliab. 44, 563 (2004)CrossRefGoogle Scholar
  2. 2.
    A.H. Johnston, IEEE Trans. Nucl. Sci. 45, 1339 (1998)CrossRefGoogle Scholar
  3. 3.
    H. Jafari, S.A.H. Feghhi, S. Boorboor, Radiat. Meas. 73, 69 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Mu, C.Z. Zhao, Q. Lu, C. Zhao, Y. Qi, S. Lam, I.Z. Mitrovic, S. Taylor, P.R. Chalker, IEEE Trans. Nucl. Sci. 64, 673 (2017)CrossRefGoogle Scholar
  5. 5.
    P.V. Dressendorfer, J.M. Soden, J.J. Harrington, T.V. Nordstrom, IEEE Trans. Nucl. Sci. 28, 4281 (1981)CrossRefGoogle Scholar
  6. 6.
    J.L. Barth, C.S. Dyer, E.G. Stassinopoulos, IEEE Trans. Nucl. Sci. 50, 466 (2003)CrossRefGoogle Scholar
  7. 7.
    S. Hu, Y. Liu, T. Chen, Q. Guo, Y.-D. Li, X.-Y. Zhang, L.J. Deng, Q. Yu, Y. Yin, S. Hosaka, IEEE Trans. Nanotechnol. 17, 61 (2018)CrossRefGoogle Scholar
  8. 8.
    M.R. Khan, M. Ishfaq, A. Ali, A.S. Bhatti, Mater. Sci. Semicond. Process. 68, 30 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Lok, S. Kaya, H. Karacali, E. Yilmaz, Radiat. Phys. Chem. 141, 155 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Dominguez-Pumar, C.R. Bheesayagari, S. Gorreta, G. Lopez-Rodriguez, J. Pons-Nin, IEEE Trans. Ind. Electron. 65, 2518 (2018)CrossRefGoogle Scholar
  11. 11.
    G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 87, 484 (2000)CrossRefGoogle Scholar
  12. 12.
    K.J. Hubbard, D.G. Schlom, J. Mater. Res. 11, 2757 (1996)CrossRefGoogle Scholar
  13. 13.
    M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkel, J. Appl. Phys. 90, 2057 (2001)CrossRefGoogle Scholar
  14. 14.
    S. Campbell, T. Ma, R. Smith, W. Gladfelter, F. Chen, Microelectron. Eng. 59, 361 (2001)CrossRefGoogle Scholar
  15. 15.
    L. Kang, B.H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, J.C. Lee, IEEE Electron Device Lett. 21, 181 (2000)CrossRefGoogle Scholar
  16. 16.
    A. Das, S. Chattopadhyay, G.K. Dalapati, Adv. Mater. Lett. 7, 123 (2016)CrossRefGoogle Scholar
  17. 17.
    N. Manikanthababu, S. Vajandar, N. Arun, A.P. Pathak, K. Asokan, T. Osipowicz, T. Basu, S.V.S. Nageswara Rao, Appl. Phys. Lett. 112, 131601 (2018)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, Z. Lin, X. Cheng, H. Xiao, F. Zhang, S. Zou, Appl. Surf. Sci. 228, 93 (2004)CrossRefGoogle Scholar
  19. 19.
    P.M. Tirmali, A.G. Khairnar, B.N. Joshi, A.M. Mahajan, Solid State Electron. 62, 44 (2011)CrossRefGoogle Scholar
  20. 20.
    L. Pereira, A. Marques, H. Águas, N. Nedev, S. Georgiev, E. Fortunato, R. Martins, Mater. Sci. Eng. B 109, 89 (2004)CrossRefGoogle Scholar
  21. 21.
    K.C. Das, S.P. Ghosh, N. Tripathy, G. Bose, A. Ashok, P. Pal, D.H. Kim, T.I. Lee, J.M. Myoung, J.P. Kar, J. Mater. Sci. Mater. Electron. 26, 6025 (2015)CrossRefGoogle Scholar
  22. 22.
    H. Kim, P.C. McIntyre, K.C. Saraswat, Appl. Phys. Lett. 82, 106 (2003)CrossRefGoogle Scholar
  23. 23.
    S.M. George, Chem. Rev. 110, 111 (2010)CrossRefGoogle Scholar
  24. 24.
    D.M. Hausmann, R.G. Gordon, J. Cryst. Growth 249, 251 (2003)CrossRefGoogle Scholar
  25. 25.
    L. Khomenkova, C. Dufour, P.-E. Coulon, C. Bonafos, F. Gourbilleau, Nanotechnology 21, 095704 (2010)CrossRefGoogle Scholar
  26. 26.
    N. Manikanthababu, T.K. Chan, A.P. Pathak, G. Devaraju, N. Srinivasa Rao, P. Yang, M.B.H. Breese, T. Osipowicz, S.V.S. Nageswara Rao, Nucl. Instrum. Methods Phys. Res. 332, 389 (2014)CrossRefGoogle Scholar
  27. 27.
    N. Manikanthababu, N. Arun, M. Dhanunjaya, V. Saikiran, S.V.S. Nageswara Rao, A.P. Pathak, Radiat. Eff. Defects Solids 170, 207 (2015)CrossRefGoogle Scholar
  28. 28.
    N. Manikanthababu, N. Arun, M. Dhanunjaya, S.V.S. Nageswara Rao, A.P. Pathak, Radiat. Eff. Defects Solids 171, 77 (2016)CrossRefGoogle Scholar
  29. 29.
    N. Manikanthababu, M. Dhanunjaya, S.V.S. Nageswara Rao, A.P. Pathak, Nucl. Instrum. Methods Phys. Res. 379, 230 (2016)CrossRefGoogle Scholar
  30. 30.
    N. Manikanthababu, T.K. Chan, S. Vajandar, V. Saikiran, A.P. Pathak, T. Osipowicz, S.V.S.N. Rao, Appl. Phys. A 123, 303 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Kaya, A. Jaksic, E. Yilmaz, Radiat. Phys. Chem. 149, 7 (2018)CrossRefGoogle Scholar
  32. 32.
    C.Z. Zhao, S. Taylor, M. Werner, P.R. Chalker, R.J. Potter, J.M. Gaskell, A.C. Jones, J. Vac. Sci. Technol. B 27, 411 (2009)CrossRefGoogle Scholar
  33. 33.
    A. Stesmans, V. V. Afanas’ev, F. Chen, S. A. Campbell, Appl. Phys. Lett. 84, 4574 (2004)CrossRefGoogle Scholar
  34. 34.
    D.K. Avasthi, Def. Sci. J. 59, 401 (2009)CrossRefGoogle Scholar
  35. 35.
    S.K. Srivastava, S.A. Khan, P. SudheerBabu, D.K. Avasthi, Nucl. Instrum. Methods Phys. Res. 332, 377 (2014)CrossRefGoogle Scholar
  36. 36.
    H. Amekura, S. Mohapatra, U.B. Singh, S.A. Khan, P.K. Kulriya, N. Ishikawa, N. Okubo, D.K. Avasthi, Nanotechnology 25, 435301 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Verma, K.C. Praveen, A. Bobby, D. Kanjilal, IEEE Trans. Device Mater. Reliab. 14, 721 (2014)CrossRefGoogle Scholar
  38. 38.
    A. Kumar, A. Hähnel, D. Kanjilal, R. Singh, Appl. Phys. Lett. 101, 153508 (2012)CrossRefGoogle Scholar
  39. 39.
    A. Kumar, T. Kumar, A. Hähnel, D. Kanjilal, R. Singh, Appl. Phys. Lett. 104, 033507 (2014)CrossRefGoogle Scholar
  40. 40.
    A. Kumar, J. Dhillon, S. Verma, P. Kumar, K. Asokan, D. Kanjilal, Semicond. Sci. Technol. 33, 085008 (2018)CrossRefGoogle Scholar
  41. 41.
    A. Bobby, N. Shiwakoti, P.M. Sarun, S. Verma, K. Asokan, B.K. Antony, Curr. Appl. Phys. 15, 1500 (2015)CrossRefGoogle Scholar
  42. 42.
    G. Lucovsky, D.M. Fleetwood, S. Lee, H. Seo, R.D. Schrimpf, J.A. Felix, J. Lning, L.B. Fleming, M. Ulrich, D.E. Aspnes, IEEE Trans. Nucl. Sci. 53, 3644 (2006)CrossRefGoogle Scholar
  43. 43.
    V.S. Vendamani, Z.Y. Dang, P. Ramana, A.P. Pathak, V.V. RaviKanthKumar, M.B.H. Breese, S.V.S. Nageswara Rao, Nucl. Instrum. Methods Phys. Res. 358, 105 (2015)CrossRefGoogle Scholar
  44. 44.
    N. Fairley, A. Carrick, J. Walton, P. Wincott, Peak Fitting with CasaXPS (Accolyte Science, Knutsford, 2010)Google Scholar
  45. 45.
    G.P. Summers, E.A. Burke, P. Shapiro, S.R. Messenger, R.J. Walters, IEEE Trans. Nucl. Sci. 40, 1372 (1993)CrossRefGoogle Scholar
  46. 46.
    J.H. Cahn, J. Appl. Phys. 30, 1310 (1959)CrossRefGoogle Scholar
  47. 47.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. 268, 1818 (2010)CrossRefGoogle Scholar
  48. 48.
    S. Daniel, Study of the degradation process of polyimide induced by high energetic ion irradiation, Universität Marburg (2008)Google Scholar
  49. 49.
    Y. Seo, S. Lee, I. An, C. Song, H. Jeong, Semicond. Sci. Technol. 24, 115016 (2009)CrossRefGoogle Scholar
  50. 50.
    H. Wang, Y. Wang, J. Zhang, C. Ye, H.B. Wang, J. Feng, B.Y. Wang, Q. Li, Y. Jiang, Appl. Phys. Lett. 93, 202904 (2008)CrossRefGoogle Scholar
  51. 51.
    K.Y. Cheong, J.H. Moon, H.J. Kim, W. Bahng, N.-K. Kim, J. Appl. Phys. 103, 084113 (2008)CrossRefGoogle Scholar
  52. 52.
    A. Paskaleva, A.J. Bauer, M. Lemberger, S. Zürcher, J. Appl. Phys. 95, 5583 (2004)CrossRefGoogle Scholar
  53. 53.
    Y. Wang, H. Wang, C. Ye, J. Zhang, H. Wang, Y. Jiang, A.C.S. Appl, Mater. Interfaces 3, 3813 (2011)CrossRefGoogle Scholar
  54. 54.
    E. Yilmaz, B. Kaleli, R. Turan, Nucl. Instrum. Methods Phys. Res. 264, 287 (2007)CrossRefGoogle Scholar
  55. 55.
    S. Kaya, E. Yilmaz, J. Radioanal. Nucl. Chem. 302, 425 (2014)CrossRefGoogle Scholar
  56. 56.
    J.L. Gavartin, D. MuñozRamo, A.L. Shluger, G. Bersuker, B.H. Lee, Appl. Phys. Lett. 89, 082908 (2006)CrossRefGoogle Scholar
  57. 57.
    A. Benyagoub, Phys. Rev. B 72, 094114 (2005)CrossRefGoogle Scholar
  58. 58.
    M. Dhanunjaya, D.K. Avasthi, A.P. Pathak, S.A. Khan, S.V.S. Nageswara Rao, Appl. Phys. A 124, 587 (2018)CrossRefGoogle Scholar
  59. 59.
    D.C. Agarwal, F. Singh, D. Kabiraj, S. Sen, P.K. Kulariya, I. Sulania, S. Nozaki, R.S. Chauhan, D.K. Avasthi, J. Phys. D. Appl. Phys. 41, 045305 (2008)CrossRefGoogle Scholar
  60. 60.
    Y. Zhang, R. Sachan, O.H. Pakarinen, M.F. Chisholm, P. Liu, H. Xue, W.J. Weber, Nat. Commun. 6, 8049 (2015)CrossRefGoogle Scholar
  61. 61.
    J.C. Ranuárez, M.J. Deen, C.-H. Chen, Microelectron. Reliab. 46, 1939 (2006)CrossRefGoogle Scholar
  62. 62.
    R.G. Southwick, W.B. Knowlton, IEEE Trans. Device Mater. Reliab. 6, 136 (2006)CrossRefGoogle Scholar
  63. 63.
    S.U. Sharath, T. Bertaud, J. Kurian, E. Hildebrandt, C. Walczyk, P. Calka, P. Zaumseil, M. Sowinska, D. Walczyk, A. Gloskovskii, T. Schroeder, L. Alff, Appl. Phys. Lett. 104, 063502 (2014)CrossRefGoogle Scholar
  64. 64.
    J.W. Zhang, G. He, M. Liu, H.S. Chen, Y.M. Liu, Z.Q. Sun, X.S. Chen, Appl. Surf. Sci. 346, 489 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Materials Science GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.School of PhysicsUniversity of HyderabadHyderabadIndia
  3. 3.Centre for Advanced 2D Materials (CA2DM)National University of SingaporeSingaporeSingapore
  4. 4.Department of Physics, Centre for Ion Beam Applications (CIBA)National University of SingaporeSingaporeSingapore
  5. 5.School of Physics, Centre for Advanced Studies in Electronics Science and Technology (CASEST)University of HyderabadHyderabadIndia
  6. 6.Electronics and Instrumentation GroupIndira Gandhi Center for Atomic ResearchKalpakkamIndia
  7. 7.Department of PhysicsSikkim UniversityGangtokIndia

Personalised recommendations