Black phosphorus nanoflakes/polyimide composite films with excellent dielectric and mechanical properties

  • Renxin XuEmail author
  • Jiali Ma
  • Rui Zhou
  • Huajun Sun
  • Dewen Xu
  • Zhe Zeng


Polyimides (PIs) and their composites hold promise as low-cost alternatives to conventional ceramic-based dielectrics. Nevertheless, they are far unsatisfactory for practice applications, mainly resulting from the low interfacial compatibility between PI matrices and inorganic fillers. Herein, black phosphorous (BP) nanoflakes/PI composite films with outstanding dielectric and mechanical properties were fabricated via an in situ polymerization pathway. Owing to the hydrophilic surface of BP nanoflakes resulting from slight oxidation during fabrication, the robust noncovalent interaction between BP and PI can be formed, leading to good interfacial compatibility between the two domains and thus well dispersion of BP in PI. Even with a low BP content of 2 wt%, the composite can reach a high-permittivity value of 8.6 at 102 Hz and a low dielectric loss value of 0.02. Moreover, the BP/PI composite films inherited the good mechanical performance of PI matrix due to homogeneous dispersion and low loading of BP.



The author particularly appreciates the support of the National Natural Science Foundation of China (Grant Numbers 51372181 and 51672190).

Supplementary material

10854_2020_2878_MOESM1_ESM.pdf (322 kb)
Supplementary material 1 (PDF 321.8 kb)


  1. 1.
    J. Wang, Y. Long, Y. Sun, X. Zhang, H. Yang, B. Lin, J. Mater. Sci. 29, 7842 (2018)Google Scholar
  2. 2.
    Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, G.-H. Hu, Prog. Mater. Sci. 57, 660 (2012)CrossRefGoogle Scholar
  3. 3.
    A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. Trukhanov, J. Alloys Compd. 791, 522 (2019)CrossRefGoogle Scholar
  4. 4.
    Q. Chen, Y. Shen, S. Zhang, Q.M. Zhang, Annu. Rev. Mater. Res. 45, 433 (2015)CrossRefGoogle Scholar
  5. 5.
    S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 466, 393 (2018)CrossRefGoogle Scholar
  6. 6.
    R.W. Johnson, J.L. Evans, P. Jacobsen, J.R.R. Thompson, M. Christopher, IEEE Trans. Electron. Packag. Manuf. 27, 164 (2004)CrossRefGoogle Scholar
  7. 7.
    X. Zhang, Y. Zhao, Y. Wu, Z. Zhang, Polymer 114, 311 (2017)CrossRefGoogle Scholar
  8. 8.
    D. Cheng, H. Wang, B. Liu, S. Wang, Y. Li, Y. Xia, C. Xiong, J. Appl. Polym. Sci. 136 (2019)Google Scholar
  9. 9.
    Y. Chen, B. Lin, X. Zhang, J. Wang, C. Lai, Y. Sun, Y. Liu, H. Yang, J. Mater. Chem. A 2, 14118 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Fang, X. Liu, Z.-K. Cui, J. Qian, J. Pan, X. Li, Q. Zhuang, J. Mater. Chem. A 3, 10005 (2015)CrossRefGoogle Scholar
  11. 11.
    Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, Y. Hou, Y. Deng, Compos. Sci. Technol. 145, 71 (2017)CrossRefGoogle Scholar
  13. 13.
    Z. Dang, Y. Lin, H. Xu, C. Shi, S. Li, J. Bai, Adv. Funct. Mater. 18, 1509 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Kobayashi, T. Tanase, T. Tabata, T. Miwa, M. Konno, J. Eur. Ceram. Soc. 28, 117 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, X. Wu, C. Feng, Q. Zeng, Microelectron. Eng. 154, 17 (2016)CrossRefGoogle Scholar
  16. 16.
    M.M. Salem, L.V. Panina, E.L. Trukhanova, M.A. Darwish, A.T. Morchenko, T.I. Zubar, S.V. Trukhanov, A.V. Trukhanov, Compos. Part B 174, 107054 (2019)CrossRefGoogle Scholar
  17. 17.
    S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, A.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, Ceram. Int. 44, 21295 (2018)CrossRefGoogle Scholar
  18. 18.
    H. Li, G. Liu, B. Liu, W. Chen, S. Chen, Mater. Lett. 61, 1507 (2007)CrossRefGoogle Scholar
  19. 19.
    A. Alias, Z. Ahmad, A.B. Ismail, Mater. Sci. Eng. B 176, 799 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Feng, J. Yin, M. Chen, M. Song, B. Su, Q. Lei, Mater. Lett. 96, 113 (2013)CrossRefGoogle Scholar
  21. 21.
    Z.-M. Dang, B. Peng, D. Xie, S.-H. Yao, M.-J. Jiang, J. Bai, Appl. Phys. Lett. 92, 112910 (2008)CrossRefGoogle Scholar
  22. 22.
    S.-Y. Yang, C.-C.M. Ma, C.-C. Teng, Y.-W. Huang, S.-H. Liao, Y.-L. Huang, H.-W. Tien, T.-M. Lee, K.-C. Chiou, Carbon 48, 592 (2010)CrossRefGoogle Scholar
  23. 23.
    B. Zhang, J. Wang, J. Peng, J. Sun, X. Su, Y. Zou, Y. Zhou, J. Mater. Sci. 30, 9785 (2019)Google Scholar
  24. 24.
    O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich, S.V. Trukhanov, Y.I. Prylutskyy, U. Ritter, J. Mater. Sci. 52, 5345 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Li, G. Wang, L. Huang, X. Kang, F. Cheng, W. Zhao, H. Li, Mater. Lett. 148, 22 (2015)CrossRefGoogle Scholar
  26. 26.
    Q. Li, G. Zhang, F. Liu, K. Han, M.R. Gadinski, C. Xiong, Q. Wang, Energy Environ. Sci. 8, 922 (2015)CrossRefGoogle Scholar
  27. 27.
    S.P. Fillery, H. Koerner, L. Drummy, E. Dunkerley, M.F. Durstock, D.F. Schmidt, R.A. Vaia, ACS Appl. Mater. Interfaces 4, 1388 (2012)CrossRefGoogle Scholar
  28. 28.
    Z. Pan, B. Liu, J. Zhai, L. Yao, K. Yang, B. Shen, Nano Energy 40, 587 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Hao, B. Yang, F. Wen, J. Xiang, L. Li, W. Wang, Z. Zeng, B. Xu, Z. Zhao, Z. Liu, Y. Tian, Adv. Mater. 28, 3194 (2016)CrossRefGoogle Scholar
  30. 30.
    F. Wu, A. Xie, M. Sun, W. Jiang, K. Zhang, Mater. Lett. 193, 30 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Sajedi-Moghaddam, C.C. Mayorga-Martinez, Z. Sofer, D. Bouša, E. Saievar-Iranizad, M. Pumera, J. Phys. Chem. C 121, 20532 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Huang, J. Qiao, K. He, S. Bliznakov, E. Sutter, X. Chen, D. Luo, F. Meng, D. Su, J. Decker, W. Ji, R.S. Ruoff, P. Sutter, Chem. Mater. 28, 8330 (2016)CrossRefGoogle Scholar
  33. 33.
    S. Haghighat-Shishavan, M. Nazarian-Samani, M. Nazarian-Samani, H. Roh, K.-Y. Chung, B.-W. Cho, S.F. Kashani-Bozorg, K.-B. Kim, J. Mater. Chem. A 4, 1 (2018)Google Scholar
  34. 34.
    G. Zheng, J. Wu, W. Wang, C. Pan, Carbon 42, 2839 (2004)CrossRefGoogle Scholar
  35. 35.
    Y. Luo, H. Wu, L. Liu, Q. Li, K. Jiang, S. Fan, J. Li, J. Wang, ACS Appl. Mater. Interfaces 10, 36058 (2018)CrossRefGoogle Scholar
  36. 36.
    B. Tian, B. Tian, B. Smith, M.C. Scott, Q. Lei, R. Hua, Y. Tian, Y. Liu, Proc. Natl. Acad. Sci. USA 115, 4345 (2018)CrossRefGoogle Scholar
  37. 37.
    X. Wu, W. Zhao, H. Wang, X. Qi, Z. Xing, Q. Zhuang, Z. Ju, J. Power Sources 378, 460 (2018)CrossRefGoogle Scholar
  38. 38.
    Q. Zhou, Q. Chen, Y. Tong, J. Wang, Angew. Chem. Int. Ed. Engl. 55, 11437 (2016)CrossRefGoogle Scholar
  39. 39.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Tyoyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Eur. Phys. J. B 42, 51 (2004)CrossRefGoogle Scholar
  40. 40.
    S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil'ev, A. Maignan, H. Szymczak, JETP Lett. 83, 33 (2006)CrossRefGoogle Scholar
  41. 41.
    S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, Phys. Solid State 50, 886 (2008)CrossRefGoogle Scholar
  42. 42.
    H. Wang, H. Xie, S. Wang, Z. Gao, C. Li, G.-H. Hu, C. Xiong, Composites Part A 108, 62 (2018)CrossRefGoogle Scholar
  43. 43.
    X. Xia, J. Yin, M. Chen, X. Liu, Polym. Test. 69, 405 (2018)CrossRefGoogle Scholar
  44. 44.
    L. Ding, L. Liu, P. Li, F. Lv, W. Tong, Y. Zhang, J. Appl. Polym. Sci. 133, 43041 (2016)Google Scholar
  45. 45.
    Q. Chi, Z. Gao, T. Zhang, C. Zhang, Y. Zhang, Q. Chen, X. Wang, Q. Lei, ACS Sustain. Chem. Eng. 7, 748 (2018)CrossRefGoogle Scholar
  46. 46.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Y. Matzui, E.L. Trukhanova, S.V. Trukhanov, J. Alloys Compd. 754, 247 (2018)CrossRefGoogle Scholar
  47. 47.
    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, J. Magn. Magn. Mater. 462, 127 (2018)CrossRefGoogle Scholar
  48. 48.
    Y. Zhang, Y. Wang, Y. Deng, M. Li, J. Bai, Mater. Lett. 72, 9 (2012)CrossRefGoogle Scholar
  49. 49.
    D. Chen, H. Zhu, T. Liu, ACS Appl. Mater. Interfaces 2, 3702 (2010)CrossRefGoogle Scholar
  50. 50.
    L. Ma, G. Wang, J. Dai, High Perform. Polym. 29, 187 (2016)CrossRefGoogle Scholar
  51. 51.
    N.D. Luong, U. Hippi, J.T. Korhonen, A.J. Soininen, J. Ruokolainen, L.-S. Johansson, J.-D. Nam, L.H. Sinh, J. Seppälä, Polymer 52, 5237 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  2. 2.The 9th Designing of China Aerospace Science Industry CorpWuhanChina
  3. 3.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanChina

Personalised recommendations