Advertisement

Low consumption design of hollow NiCo-LDH nanoflakes derived from MOFs for high-capacity electrode materials

  • Mingming Zhou
  • Fengkai Xu
  • Sheng Zhang
  • Bendong Liu
  • Yiming Yang
  • Kai Chen
  • Jianwei QiEmail author
Article

Abstract

A low consumption and facile method was employed to prepare hollow nickel–cobalt-layered double hydroxide (NiCo-LDH) nanoflakes grown in situ on nickel foam in deionized water at room temperature. By using MOFs (Metal–organic frameworks) as the precursor and then adjusting the Ni2+ ion exchange reaction time, the surface morphology and electrochemical performance of NiCo-LDH electrode materials can be greatly optimized. NiCo-LDH nanoflakes with a thickness of 150 nm as electrode material have a high specific capacity of 2148 F/g at the current density of 1 A/g and possess cycling stability of 82% capacity retention after 1000 cycles. This study provides a prominent approach for fabricating hollow nanomaterials with three-dimensional structures, and its excellent electrochemical performances make it a promising candidate for low energy consumption and high-performance energy storage devices.

Notes

Acknowledgements

This work was financially supported by the National Science Foundation of China (Grant Nos. 51505478 and 51705517) and the Fundamental Research Funds for the Central Universities (Grant No. 2013QNA05).

Reference

  1. 1.
    Y. Gong, H. Pan, Z. Xu et al., Int. J. Hydrogen Energy 31, 14360–14368 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Su, Y.F. Xu, S.Y. Shen et al., J. Energy Chem. 27, 1637–1643 (2018)CrossRefGoogle Scholar
  3. 3.
    P. Ge, C. Zhang, H. Hou et al., Nano Energy 48, 617–629 (2018)CrossRefGoogle Scholar
  4. 4.
    M. Lan, R. Guo, Y. Dou, J. Zhou, A. Zhou, J. Li, Nano Energy 33, 238–246 (2017)CrossRefGoogle Scholar
  5. 5.
    W. Zhan, L. Sun, X. Han, Nano-Micro Lett. 11, 1 (2019)CrossRefGoogle Scholar
  6. 6.
    C. Jiao, Z. Wang, X. Zhao et al., Angew. Chem. Int. Ed. 57, 1–6 (2018)CrossRefGoogle Scholar
  7. 7.
    X. Cao, Z. Han, Chem. Commun. 55, 1746–1749 (2019)CrossRefGoogle Scholar
  8. 8.
    R. Lina, H. Leia, D. Ruana et al., Nano Energy 56, 82–91 (2019)CrossRefGoogle Scholar
  9. 9.
    A. González, E. Goikole, J.A. Barrena et al., Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)CrossRefGoogle Scholar
  10. 10.
    W. Raza, F. Ali, N. Raza et al., Nano Energy 52, 441–473 (2018)CrossRefGoogle Scholar
  11. 11.
    F. Cao, M. Gan, L. Ma et al., Synth. Met. 234, 154–160 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Li, J. Xu, J. Lei et al., J. Mater. Chem. A 3, 1953–1960 (2015)CrossRefGoogle Scholar
  13. 13.
    H. Niu, Y. Zhang, Y. Liu et al., J. Colloid Interface Sci. 539, 545–552 (2019)CrossRefGoogle Scholar
  14. 14.
    Y. Du, R.Z. Chen, J.F. Yao et al., Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. J. Alloys Compd. 551, 125–130 (2013)CrossRefGoogle Scholar
  15. 15.
    X. Han, X. He, F. Wang et al., J. Mater. Chem. A 5(21), 10220–10226 (2017)CrossRefGoogle Scholar
  16. 16.
    B. Ma, P.Y. Guan, Q.Y. Li et al., ACS Appl. Mater. Interfaces 8(40), 26794–26800 (2016)CrossRefGoogle Scholar
  17. 17.
    J.W. Lee, J.M. Ko, J.D. Kim, J. Phys. Chem. C 115, 19445 (2011)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, S. Gai, C. Li et al., Electrochim. Acta 90, 673 (2013)CrossRefGoogle Scholar
  19. 19.
    G.S. Gund, D.P. Dubal, S.B. Jambure et al., J. Mater. Chem. A 1, 4793 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Chen, B. Qu, L. Hu et al., Nanoscale 5, 9812 (2013)CrossRefGoogle Scholar
  21. 21.
    Z. Lu, Z. Chang, W. Zhu et al., Chem. Commun. 47, 9651 (2011)CrossRefGoogle Scholar
  22. 22.
    H. Ma, J. He, D.B. Xiong et al., ACS Appl. Mater. Interfaces 8, 1992–2000 (2016)CrossRefGoogle Scholar
  23. 23.
    D. Zha, P. Xiong, X. Wang, Electrochim. Acta 185, 218–228 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Zhang, Y. Zhu, X. Tang et al., J. Mater. Sci. 29, 20800–20807 (2018)Google Scholar
  25. 25.
    T. Wang, S. Zhang, X. Yan et al., ACS Appl. Mater. Interfaces 9, 15510–15524 (2017)CrossRefGoogle Scholar
  26. 26.
    P. Wang, Y. Li, S. Li et al., J. Mater. Sci. 28, 9221–9227 (2017)Google Scholar
  27. 27.
    H. Hu, B.Y. Guan, B.Y. Xia et al., J. Am. Chem. Soc. 137, 5590 (2015)CrossRefGoogle Scholar
  28. 28.
    C. Guan, X. Liu, W. Ren, Adv. Energy Mater. 7(12), 1602391 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Shen, L. Yu, H. Wu et al., Nat. Commun. 6, 6694 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Fang, J. Zhou, C. Liang et al., Nano Energy 26, 57–65 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Wang, J. Tang, B. Ding, Small 14, 1704461 (2018)CrossRefGoogle Scholar
  32. 32.
    Z. Lv, Q. Zhong, Y. Bu, Adv. Mater. Interfaces 5, 1800438 (2018)CrossRefGoogle Scholar
  33. 33.
    H. Chen, L. Hu, M. Chen et al., Adv. Funct. Mater. 24, 934–942 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Jin, D. Yuan, S. Zhu et al., Dalton Trans. 47, 8706–8715 (2018)CrossRefGoogle Scholar
  35. 35.
    T. Guan, L. Fang, Y. Lu et al., Colloids and Surf. A 529, 907–915 (2017)CrossRefGoogle Scholar
  36. 36.
    Y.M. Jeong, I. Son, S.H. Baek, Appl. Surf. Sci. 20, 963–967 (2019)CrossRefGoogle Scholar
  37. 37.
    T. Yan, R. Li, Z. Li, Mater. Res. Bull. 51, 97–104 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Yan, R. Li, T. Yang et al., Electrochim. Acta 152, 530–537 (2015)CrossRefGoogle Scholar
  39. 39.
    Z. Lv, Q. Zhong, Y. Bu, Electron. Mater. Lett. 12, 824–829 (2016)CrossRefGoogle Scholar
  40. 40.
    H. Jia, Z. Wang, X. Zheng, Chem. Eng. J. 351, 348–355 (2018)CrossRefGoogle Scholar
  41. 41.
    J. Ji, L. Zhang, H. Ji et al., ACS Nano 7, 6237–6243 (2013)CrossRefGoogle Scholar
  42. 42.
    S. Zhang, Y. Zhu, C. Kong et al., J. Mater. Sci. 30, 16000 (2019)Google Scholar
  43. 43.
    L. Mei, T. Yang, C. Xu et al., Nano Energy 3, 36–45 (2014)CrossRefGoogle Scholar
  44. 44.
    D. Yu, B. Wu, J. Ran et al., J. Mater. Chem. A 4, 16953–16960 (2016)CrossRefGoogle Scholar
  45. 45.
    D. Zha, H. Sun, Y. Fu et al., Electrochim. Acta 236, 18–27 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Materials and PhysicsChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.Jinan Rail Transit Group Co. LTDJinanPeople’s Republic of China

Personalised recommendations