Advertisement

Correlation between crystal structure and microwave dielectric properties of CaRE4Si3O13 (RE = La, Nd, Sm, and Er)

  • 12 Accesses

Abstract

Novel CaRE4Si3O13 (RE = La, Nd, Sm, and Er) microwave dielectric ceramics were prepared using solid-state reaction sintered at 1350–1400 °C for 5 h. CaRE4Si3O13 (RE = La, Nd, Sm, and Er) possessed an apatite structure with the P63/m space group. The lattice parameters a, b and c; theoretical density and unit cell volumes of CaRE4Si3O13 (RE = La, Nd, Sm, and Er) gradually decreased when RE changed from La to Er, and a pure phase was formed at all compositions. The εr, Q × f, and τf values of the CaRE4Si3O13 (RE = La, Nd, Sm, and Er) ceramics were related to the total ionic polarizability, packing fraction, and polyhedral distortion of RE/Ca(2)O7, respectively. The optimal microwave dielectric properties of the CaRE4Si3O13 ceramics (εr = 13.37, Q × f = 18,600 GHz, and τf =  − 17.8 ppm/°C) were obtained at RE = Er.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    M.T. Sebastian, Dielectric materials for wireless communications (Elseiver, Oxford, 2008)

  2. 2.

    I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2006)

  3. 3.

    M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015)

  4. 4.

    T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc. 23(14), 2573–2578 (2003)

  5. 5.

    H.H. Guo, D. Zhou, L.X. Pang, J.Z. Su, Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss. J. Materiomics 4(4), 368–382 (2018)

  6. 6.

    S.P. Wu, C. Jiang, Y.X. Mei, W.P. Tu, Synthesis and microwave dielectric properties of Sm2SiO5 ceramics. J. Am. Ceram. Soc. 95(1), 37–40 (2012)

  7. 7.

    K. Du, X.Q. Song, J. Li, J.M. Wu, W.Z. Lu, X.C. Wang, W. Lei, Optimized phase compositions and improved microwave dielectric properties based on calcium tin silicates. J. Eur. Ceram. Soc. 39(2–3), 340–345 (2019)

  8. 8.

    S.P. Wu, D.F. Chen, C. Jiang, Y.X. Mei, Q. Ma, Synthesis of monoclinic CaSnSiO5 ceramics and their microwave dielectric properties. Mater. Lett. 91, 239–241 (2013)

  9. 9.

    S.P. Wu, D.F. Chen, Y.X. Mei, Q. Ma, Synthesis and microwave dielectric properties of Ca3SnSi2O9 ceramics. J. Alloys Compd. 521, 8–11 (2012)

  10. 10.

    P.G. Shakhil, A. Antoney, P.V. Narayanan, T. Sanaj, L. Jose, N.S. Arun, R. Ratheesh, Preparation, characterization and dielectric properties of Ca2ZrSi4O12 ceramic and filled silicone rubber composites for microwave circuit applications. Mater. Sci. Eng. B. 225, 115–121 (2017)

  11. 11.

    A. Kan, H. Ogawa, H. Ohsato, Synthesis and crystal structure-microwave dielectric property relations in Sn-substituted Ca3(Zr1− xSnx)Si2O9 solid solutions with cuspidine structure. Jpn. J. Appl. Phys. 46, 7108–7111 (2007)

  12. 12.

    X.Q. Song, K. Du, J. Li, W.Z. Lu, X.C. Wang, W. Lei, Crystal structure, phase composition and microwave dielectric properties of Ca3MSi2O9 ceramics. J. Alloys Compd. 750, 996–1002 (2018)

  13. 13.

    X.Q. Song, K. Du, J. Li, R. Muhammad, W.Z. Lu, X.C. Wang, W. Lei, Crystal structures and microwave dielectric properties of novel low-permittivity Ba1− xSrxZnSi3O8 ceramics. Mater. Res. Bull. 112, 178–181 (2019)

  14. 14.

    Z.Y. Zou, Z.H. Chen, X.K. Lan, W.Z. Lu, B. Ullah, X.H. Wang, W. Lei, Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn(1+ x )Si2O(7+ x ) ceramics. J. Eur. Ceram. Soc. 37(9), 3065–3071 (2017)

  15. 15.

    W. Lei, R. Ang, X.C. Wang, W.Z. Lu, Phase evolution and near-zero shrinkage in BaAl2Si2O8 low-permittivity microwave dielectric ceramics. Mater. Res. Bull. 50, 235–239 (2014)

  16. 16.

    X.Q. Song, M.Q. Xie, K. Du, W.Z. Lu, W. Lei, Synthesis, crystal structure and microwave dielectric properties of self-temperature stable Ba1− xSrxCuSi2O6 ceramics for millimeter-wave communication. J. Mater. 5(4), 606–617 (2019)

  17. 17.

    N.M. Khaidukov, M. Kirm, E. Feldbach, H. Magi, V. Nagirnyi, E. Toldsepp, S. Vielhauer, T. Justel, V.N. Makhow, Luminescence properties of silicate apatite phosphors M2La8Si6O26: Eu (M = Mg, Ca, Sr). J. Lumin. 191, 51–55 (2017)

  18. 18.

    L.W. Schroeder, M. Mathew, Cation ordering in Ca2La8(SiO4)6O24. J. Solid. State Chem. 26, 383–387 (1978)

  19. 19.

    J.V. Crum, S. Chong, J.A. Peterson, B.J. Riley, Syntheses, crystal structures, and comparisons of rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2. Acta. Cryst. E 75, 1020–1025 (2019)

  20. 20.

    S. Thomas, M.T. Sebastian, Microwave dielectric properties of Sr2RE8Si6O26 (RE = La, Pr, Nd, Sm, Er, Gd, Tb, Dy, Er, Tm, Yb, and Y) ceramics. J. Am. Ceram. Soc. 92(12), 2975–2981 (2009)

  21. 21.

    J.B. Song, K.X. Song, J.S. Wei, H.X. Lin, J.M. Xu, J. Wu, W.T. Su, Microstructure characteristics and microwave dielectric properties of calcium apatite ceramics as microwave substrates. J. Alloys Compd. 731, 264–270 (2018)

  22. 22.

    M.T. Sebastian, Silicate and aluminate based dielectric ceramics for microwave communication (2010)

  23. 23.

    C.C. Li, H.C. Xiang, M.Y. Xu, Y. Tang, L. Fang, Li2AGeO4 (A = Zn, Mg): Two novel low-permittivity microwave dielectric ceramics with olivine structure. J. Eur. Ceram. Soc. 38(4), 1524–1528 (2018)

  24. 24.

    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969)

  25. 25.

    A.C. Larson, R.B. Von Dreele, Los Alamos National Laboratory Report. LAUR, pp. 86–748 (1994)

  26. 26.

    B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001)

  27. 27.

    B.W. Hakki, P.D. Coleman, A dielectric resonant method of measuring inductive capacitance in the millimeter range. IRE Trans. Microw. Theory Technol. 8, 402–410 (1960)

  28. 28.

    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

  29. 29.

    X.Q. Song, W.Z. Lu, X.C. Wang, X.H. Wang, G.F. Fan, R. Muhammad, W. Lei, Sintering behaviour and microwave dielectric properties of BaAl2−2 x(ZnSi)xSi2O8 ceramic. J. Eur. Ceram. Soc. 38(4), 1529–1534 (2018)

  30. 30.

    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

  31. 31.

    P. Zhang, Y.G. Zhao, L.X. Li, The correlations among bond ionicity, lattice energy and microwave dielectric properties of (Nd1− xLax)NbO4 ceramics. Phys. Chem. Chem. Phys. 17, 16692–16698 (2015)

  32. 32.

    W. Lei, A. Ran, X.C. Wang, W.Z. Lu, Phase evolution and near-zero shrinkage in BaAl2Si2O8 low-permittivity microwave dielectric ceramics. Mater. Res. Bull. 50, 235–239 (2014)

  33. 33.

    G. Wang, D.N. Zhang, F. Xu, X. Huang, Y. Yang, G.W. Gan, Y.M. Lai, Y.H. Rao, C. Liu, J. Li, L.C. Jin, H.W. Zhang, Correlation between crystal structure and modified microwave dielectric characteristics of Cu2+ substituted Li3Mg2NbO6 ceramics. Ceram. Int. 45(8), 10170–10175 (2019)

  34. 34.

    W. Lei, Z.Y. Zou, Z.H. Chen, B. Ullah, A. Zeb, X.K. Lan, W.Z. Lu, G.F. Fan, X.H. Wang, X.C. Wang, Controllable τf value of barium silicate microwave dielectric ceramics with different Ba/Si ratios. J. Am. Ceram. Soc. 101(1), 25–30 (2017)

  35. 35.

    Y.M. Lai, X.L. Tang, X. Huang, H.W. Zhang, X.F. Liang, J. Li, H. Su, Phase composition, crystal structure and microwave dielectric properties of Mg2− xCuxSiO4 ceramics. J. Eur. Ceram. Soc. 38(4), 1508–1516 (2018)

  36. 36.

    C. Te Lee, C.C. Ou, Y.C. Lin, C.Y. Huang, C.Y. Su, Structure and microwave dielectric property relations in (Ba1− xSrx)5Nb4O15 system. J. Eur. Ceram. Soc. 27(5), 2273–2280 (2007)

  37. 37.

    S.D. Ramarao, V.R.K. Murthy, Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scr. Mater. 69(3), 274–277 (2013)

  38. 38.

    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)

  39. 39.

    Y. Zhang, Y. Zhang, M. Xiang, Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics. J. Eur. Ceram. Soc. 36(8), 945–1951 (2015)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC-51572093 and 51772107), Research Projects of Electronic Components and Devices of China (1807WM0004), the Major Programs of Technical Innovation in Hubei Province of China (2018AAA039), and the Innovation Team Program of Hubei Province (New microwave devices for next generation wireless communication systems).

Author information

Correspondence to Wen Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, K., Zou, Z., Song, X. et al. Correlation between crystal structure and microwave dielectric properties of CaRE4Si3O13 (RE = La, Nd, Sm, and Er). J Mater Sci: Mater Electron (2020) doi:10.1007/s10854-020-02875-0

Download citation