Advertisement

Preparation and characterization and photoluminescence properties of CeF3@ZnS nanocomposites

  • H. Ahmadi
  • M. BagherzadehEmail author
  • M. RaeisiEmail author
  • F. Payami
Article
  • 6 Downloads

Abstract

In the present work, new nanocomposites of CeF3@ZnS with various weight ratios (1:1, 1:3, 1:5 and 1:7) were synthesized by wet chemistry method and characterized by using XRD, SEM, EDX, and TEM techniques. The optical spectra of the prepared nanocomposites were measured at room temperature and analyzed here for the first time. The obtained results showed an enhancement in energy transfer rate from CeF3 to ZnS nanoparticles due to large overlapping of CeF3 emission and ZnS absorption spectra. The presence of ZnS nanoparticles around CeF3 nanoparticle as core–shell structure lead to shift a defect state originated from emission peak at 480 nm in pure ZnS nanoparticles. Effect of ZnS nanoparticle amount, in photoluminescence properties of CeF3@ZnS nanocomposite, was investigated and obtained results are presented and discussed.

Notes

Acknowledgements

The authors would like to acknowledge the financial and equipment supported by NSTRI and University of Shahrekord.

References

  1. 1.
    C.W. Van Eijk, Nucl. Instrum. Methods Phys. Res. Sect. A 460, 1 (2001)CrossRefGoogle Scholar
  2. 2.
    M.J. Weber, J. Lumin. 100, 35 (2002)CrossRefGoogle Scholar
  3. 3.
    I.H. Campbell, B.K. Crone, Adv. Mater. 18, 77 (2006)CrossRefGoogle Scholar
  4. 4.
    W. Chen, J. Nanosci. Nanotechnol. 8, 1019 (2008)CrossRefGoogle Scholar
  5. 5.
    E.A. McKigney, R.E. Del Sesto, L.G. Jacobsohn et al., Nucl. Instrum. Methods Phys. Res. Sect. A 579, 15 (2007)CrossRefGoogle Scholar
  6. 6.
    L.G. Jacobsohn, K.B. Sprinkle, S.A. Roberts et al., J. Nanomater. 2011, 42 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Hossu, Z. Liu, M. Yao, L. Ma, W. Chen, Appl. Phys. Lett. 100, 013109 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Sahi, W. Chen, K. Jiang, J. Lumin. 159, 105 (2015)CrossRefGoogle Scholar
  9. 9.
    X. Fang, T. Zhai, U.K. Gautam et al., Prog. Mater. Sci. 56, 175 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Karimi, M. Raeisi, M. Bagherzadeh, F. Payami, SN Appl. Sci. 1, 635 (2019)CrossRefGoogle Scholar
  11. 11.
    W. Moses, S. Derenzo, M. Weber, A. Ray-Chaudhuri, F. Cerrina, J. Lumin. 59, 89 (1994)CrossRefGoogle Scholar
  12. 12.
    W. Moses, S. Derenzo, IEEE Trans. Nucl. Sci. 36, 173 (1989)CrossRefGoogle Scholar
  13. 13.
    B. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)Google Scholar
  14. 14.
    Z. Sun, Y. Li, X. Zhang, M. Yao, L. Ma, W. Chen, J. Nanosci. Nanotechnol. 9, 6283 (2009)CrossRefGoogle Scholar
  15. 15.
    K.V. Anand, R. Mohan, R.M. Kumar, M.K. Chinnu, R. Jayavel, Proc. Indian Natl Sci. Acad. 79, 395 (2013)Google Scholar
  16. 16.
    R. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994)CrossRefGoogle Scholar
  17. 17.
    P. Lippens, M. Lannoo, Phys. Rev. B 39, 10935 (1989)CrossRefGoogle Scholar
  18. 18.
    K. Jayanthi, S. Chawla, H. Chander, D. Haranath, Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 42, 976 (2007)CrossRefGoogle Scholar
  19. 19.
    A.A. Khosravi, M. Kundu, L. Jatwa et al., Appl. Phys. Lett. 67, 2702 (1995)CrossRefGoogle Scholar
  20. 20.
    J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu, J. Shen, Appl. Phys. Lett. 70, 2335 (1997)CrossRefGoogle Scholar
  21. 21.
    Z.-L. Wang, Z.-W. Quan, P.-Y. Jia et al., Chem. Mater. 18, 2030 (2006)CrossRefGoogle Scholar
  22. 22.
    R. Clegg, Fluorescence Resonance Energy Transfer (Wiley, New York, 1996), pp. 179–251Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceShahrekord UniversityShahrekordIran
  2. 2.Reactor and Nuclear Safety Research SchoolNuclear Science and Technology Research InstituteIsfahanIran

Personalised recommendations