Preparation of Ti-heteropolyacid/TiO2 and its rapid photocatalytic degradation of X-3B

  • Limei Ai
  • Danfeng Zhang
  • Qiang Wang
  • Fengwei He
  • Hongyuan Yang
  • Qingyin WuEmail author


The Ti-heteropolyacid H4[Ti(H2O)TiW11O39]·7H2O (TiW11Ti) loading TiO2 with different contents was prepared using dipping method. The TiW11Ti/TiO2 hybrid was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). The photocatalytic performance of TiW11Ti/TiO2 hybrid was investigated by rapid degradation of X-3B as simulated wastewater under xenon light irradiation. The different loading amount of TiW11Ti exhibited different activity. The order of different loading weights of TiW11Ti was as follows: 43 wt% TiW11Ti > 31 wt% TiW11Ti > 50 wt% TiW11Ti > 20 wt% TiW11Ti. The results revealed that the rapid degradation process followed the first-order kinetic reaction according to Langmuir equation. The TiW11Ti/TiO2 hybrid exhibited highly efficient photocatalytic activity, which was potential for environmental purification.



This project was supported by the Doctoral Start-up Foundation of Liaoning Provincial Natural Science Foundation of China (Grant No. 2019-BS-129), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY18B010001) and the PhD Research Start-up Fund of Liaoning Institute of Science and Technology (Grant No. 1810B07). The authors also thank their colleagues and other students who participated in this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    X.Q. An, Q.W. Tang, H.C. Lan, H.J. Liu, J.H. Qu, Appl. Catal. B 244, 407–413 (2019)CrossRefGoogle Scholar
  2. 2.
    G. Liu, Y.Z. Zhang, L. Xu, B.B. Xu, F.Y. Li, New J. Chem. 43, 3469–3475 (2019)CrossRefGoogle Scholar
  3. 3.
    S. Sampurnam, S. Muthamizh, T. Dhanasekaran, D. Latha, A. Padmanaban, P. Selvam, A. Stephen, V. Narayanan, J. Photochem. Photobiol. A 370, 26–40 (2019)CrossRefGoogle Scholar
  4. 4.
    B.L. Fei, J.K. Zhong, N.P. Deng, J.H. Wang, Q.B. Liu, Y.G. Li, X. Mei, Chemosphere 197, 241–250 (2018)CrossRefGoogle Scholar
  5. 5.
    X.J. Dui, X.Y. Wu, T. Teng, L. Zhang, H.F. Chen, W.B. Yang, C.Z. Lu, Inorg. Chem. Commun. 55, 108–111 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Chen, W. Li, D. Jiang, K. Men, Z. Li, L. Li, S. Sun, J. Li, Z.H. Huang, L.N. Wang, Sci. Bull. 64, 44–53 (2019)CrossRefGoogle Scholar
  7. 7.
    H. Rezaei Ghalebi, S. Aber, A. Karimi, J. Mol. Catal. A 415, 96–103 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Catal. Today 53, 51–59 (1999)CrossRefGoogle Scholar
  9. 9.
    H. Wu, X.F. Wu, Q.Y. Wu, W.F. Yan, Compos. Sci. Technol. 162, 1–6 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Fathinia, A. Khataee, A. Naseri, S. Aber, Spectrochim. Acta A 136, 1275–1290 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Wu, H.X. Cai, Y.R. Xu, Q.Y. Wu, W.F. Yan, Mater. Chem. Phys. 215, 163–167 (2018)CrossRefGoogle Scholar
  12. 12.
    M.A. Marsooli, M. Fasihi-Ramandi, K. Adib, S. Pourmasoud, F. Ahmadi, M.R. Ganjali et al., Materials 12, 3274 (2019)CrossRefGoogle Scholar
  13. 13.
    M. Rahimi-Nasrabadi, A. Ghaderi, H.R. Banafshe, M. Eghbali-Arani, M. Akbari, F. Ahmadi, S. Pourmasoud, A. Sobhani-Nasab, J. Mater. Sci.: Mater. Electron. 30, 15854–15868 (2019)Google Scholar
  14. 14.
    A. Sobhani-Nasab, S. Behvandi, M.A. Karimi, E. Sohouli, M.S. Karimi, N. Gholipour, F. Ahmadi, M. Rahimi-Nasrabadi, Ceram Int 45, 17847–17858 (2019)CrossRefGoogle Scholar
  15. 15.
    S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, J. Mater. Sci.: Mater. Electron 30, 6902–6909 (2019)Google Scholar
  16. 16.
    S.M. Peymani-Motlagh, N. Moeinian, M. Rostami, M. Fasihi-Ramandi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Eghbali-Arani, M.R. Ganjali, T. Jesionowski, H. Ehrlich, M.A. Karimi, N. Ajami, J. Rare Earth 37, 1288–1295 (2019)CrossRefGoogle Scholar
  17. 17.
    H. Kooshki, A. Sobhani-Nasab, M. Eghbali-Arani, F. Ahmadi, V. Ameri, M. Rahimi-Nasrabadi, Sep. Purif. Technol. 211, 873–881 (2019)CrossRefGoogle Scholar
  18. 18.
    A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, J. Mater. Sci.: Mater. Electron 30, 5854–5865 (2019)Google Scholar
  19. 19.
    X.Y. Yang, H.F. Zhang, S.X. Li, J.Q. Sha, X. Li, F. Ma, Polyhedron 144, 240–248 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Chen, N.P. Wang, C.P. Li, D.G. Wang, L. He, W. Li, Y.H. Li, J. Suo, Mater. Focus 4, 37–43 (2015)CrossRefGoogle Scholar
  21. 21.
    G.P. He, C.L. Xing, X. Xiao, R.P. Hu, X.X. Zuo, J.M. Nan, Appl. Catal. B 170–171, 1–9 (2015)Google Scholar
  22. 22.
    C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536–551 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Aslam, M.T. Qamar, S. Ali, A.U. Rehman, M.T. Soomro, I. Ahmed, I.M.I. Ismail, A. Hameed, J. Environ. Manage. 217, 805–814 (2018)CrossRefGoogle Scholar
  24. 24.
    E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zanganeh, J. Mater. Sci.: Mater. Electron. 29, 20668–20679 (2018)Google Scholar
  25. 25.
    L. Yue, Y. Zhang, W.H. Sun, X. Luo, J. Lian, Z.X. Li, Y.F. Jiang, W.L. Zhang, Mater. Lett. 237, 137–140 (2019)CrossRefGoogle Scholar
  26. 26.
    X.X. Ma, T.T. Wang, M.N. Zhang, W.C. Zhu, Z.S. Zhang, H. Zhang, Catal. Lett. 148, 660–670 (2018)CrossRefGoogle Scholar
  27. 27.
    H.B. Liu, L. Bai, L.M. Ai, W.S. Dai, D.F. Zhang, Q.Y. Wu, R.C. Zhang, J. Rare Earth 37, 617–621 (2019)CrossRefGoogle Scholar
  28. 28.
    E. Rafiee, S. Eavani, RSC Adv. 6, 46433–46466 (2016)CrossRefGoogle Scholar
  29. 29.
    Q.Y. Wu, W.Q. Feng, X.G. Sang, L. Cao, Transit. Met. Chem. 29, 900–903 (2004)CrossRefGoogle Scholar
  30. 30.
    B. Pal, B.L. Vijayan, S.G. Krishnan, M. Harilal, J. Alloys Compd. 740, 703–710 (2018)CrossRefGoogle Scholar
  31. 31.
    H.X. Jin, Q.Y. Wu, W.Q. Pang, J. Hazard. Mater. 141, 123–127 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Farhadi, M. Dusek, F. Siadatnasab, V. Eigner, A. Mokhtari Andani, Polyhedron 126, 227–238 (2017)CrossRefGoogle Scholar
  33. 33.
    H.M. Heng, Q. Gan, P.C. Meng, X. Liu, J. Alloys Compd. 696, 51–59 (2017)CrossRefGoogle Scholar
  34. 34.
    P. Niu, D.Q. Wang, A.L. Wang, Y.H. Liang, X.F. Wang, J. Nanomater. (2018). CrossRefGoogle Scholar
  35. 35.
    A. AlShehri, N. Katabathini, Catal. Commun. 108, 17–22 (2018)CrossRefGoogle Scholar
  36. 36.
    P.J. Gong, J.J. Pang, H.F. Hu, H.J. Li, L.J. Chen, J.W. Zhao, Chem Asian J. 13, 3762–3775 (2018)CrossRefGoogle Scholar
  37. 37.
    R. Qin, F.M. Meng, M.W. Khan, B. Yu, H.J. Li, Z.H. Fan, J.F. Gong, Mater. Lett. 240, 84–87 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Biomedical & Chemical EngineeringLiaoning Institute of Science and TechnologyBenxiPeople’s Republic of China
  2. 2.Department of ChemistryZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations