Advertisement

Structural, magnetic, and electrical characterization of Sr-substituted LaFeO3 perovskite synthesized via sucrose auto-combustion route

  • 16 Accesses

Abstract

In this work, a series of Sr-substituted lanthanum orthoferrite perovskites, La1−xSrxFeO3 (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0), were prepared using the sucrose-assisted auto-combustion route to study the effect of Sr-substitution on the structural, magnetic, and electrical properties and to investigate the impact of the entire method on different properties. The auto-combustion process and the perovskites formation were followed using differential thermal analysis–thermogravimetry techniques. The obtained different phases were characterized using X-ray diffractometer (XRD), Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy HRTEM measurements. XRD revealed peaks attributed to SrCO3 secondary phase increases in their intensity by increasing Sr-content till predominate at x = 1.0. It also showed a transfer from orthorhombic symmetry to rhombohedral one by increasing Sr-content. The obvious contraction in the unit cell parameters by Sr-substitution could be attributed to the Fe3+  → Fe4+ oxidation occurred to balance the total charge on molecule. The obvious increase in the magnetization by increasing Sr could be attributed to the formation of Fe4+ ions, strengthening the ferromagnetic component through sharing in the double-exchange interaction, Fe4+–O–Fe3+, as well as the formation of oxygen vacancies that disturb the uncompensated surface spin. Ac-conductivity measurements indicated a change in the entire conduction mechanism from electronic to ionic with improving conductivity by increasing Sr-content. Generally, the utilized sucrose method indicated an improvement in the obtained magnetization accompanied by lowering conductivity than previously reported systems in literature.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    J.P. Lin, Z. Guo, M. Li, Q. Lin, K. Huang, Y. He, J. Appl. Biomater. Funct. Mater. 16, 93 (2018)

  2. 2.

    N. Ramadass, ABO3-type-oxides-their structure and properties: a bird’s eye view. Mater. Sci. Eng. 36, 231–239 (1978)

  3. 3.

    K. Fan, H. Qin, L. Wang, L. Ju, J. Hu, CO2 Gas sensors based on La1 xSrxFeO3 nanocrystalline powders. Sens. Actuators B 177, 265–269 (2013)

  4. 4.

    M. Noroozifar, M. Khorasani-Motlagh, M. Ekrami-Kakhki, Enhanced electrocatalytic properties of Pt–Chitosan nanocomposite for direct methanol fuel cell by LaFeO3 and carbon nanotube. J. Power. Sources. 248, 130–139 (2014)

  5. 5.

    Y.M. Zhang, J. Zhang, J.L. Chen, Z.Q. Zhu, Q.J. Liu, Improvement of response to formaldehyde at Ag-LaFeO3 based gas sensors through incorporation of SWCNTs. Sens. Actuators B 195, 509–514 (2014)

  6. 6.

    S. Acharya, D.K. Padhi, K.M. Parida, Visible light driven LaFeO3 nano sphere/RGO compositephotocatalysts for efficient water decomposition reactions. Catal. Today. (2017). https://doi.org/10.1016/j.cattod.2017.01.001

  7. 7.

    E.A. Nforna, J.N. Ghogomu, P.A. Joy, J.N. Lambi, Structure and magnetic properties of lanthanum strontium ferrites nanopowders synthesized by thermal decomposition of mixed metal acetyl acetonates. Int. J. Eng. Res. Technol. 4, 907–914 (2015)

  8. 8.

    J.P. Lin, Z.P. Guo, Q. Lin, Y.L. Wang, K.L. Huang, Y. He, Mater. Sci. 25, 135 (2019)

  9. 9.

    M. Hung, M.V.M. Rao, D. Tsai, Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode. Mater. Chem. Phys. 101, 297–302 (2007)

  10. 10.

    X. Dai, C. Yu, Q. Wu, Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane. J. Nat. Gas Chem. 17, 415–418 (2008)

  11. 11.

    K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1–x)ZnxFeO3, x = 010, and 030). J. Magn. Magn. Mater. 329, 133–141 (2013)

  12. 12.

    Y. Janbutrach, S. Hunpratub, E. Swatsitang, Ferromagnetism and optical properties of La1 xAlxFeO3 nanopowders nanoscale. Res. Lett. 9, 498–954 (2014)

  13. 13.

    A. Rai, A.K. Thakur, Effect of co-substitution on structural, optical, dielectric and magnetic behavior of LaFeO3. J. Alloys Compd. 695, 3579–3588 (2017)

  14. 14.

    Q. Lin, J. Lin, X. Yang, Y. He, L. Wang, J. Dong, The effects of Mg2+ and Ba2+ dopants on the microstructure and magnetic properties of doubly-doped LaFeO3 perovskite catalytic nanocrystals. Ceram. Int. 45, 3333–3340 (2019)

  15. 15.

    P.A. Murade, V.S. Sangawar, G.N. Chaudhari, V.D. Kapse, A.U. Bajpeyee, Acetone gas-sensing performance of Sr-doped nanostructured LaFeO3 semiconductor prepared by citrate sol-gel route. Curr. Appl. Phys. 11, 451–456 (2011)

  16. 16.

    Z. Xiaojing, L. Huaju, L. Yong, S. Wenjie, Structural properties and catalytic activity of Sr-substituted LaFeO3 perovskite. Chin. J. Catal. 33, 1109–1114 (2012)

  17. 17.

    F. He, X. Li, K. Zhao, Z. Huang, G. Wei, H. Li, The use of La1 xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane. Fuel 108, 465–473 (2013)

  18. 18.

    K. Zhao, F. He, Z. Huang, A. Zheng, H. Li, Z. Zhao, La1−xSrxFeO3 perovskites as oxygen carriers for the partial oxidation of methane to syngas. Chin. J. Catal. 35, 1196–1205 (2014)

  19. 19.

    A. Cyza, A. Kopia, L. Cieniek, J. Kusinski, Structural characterization of Sr doped LaFeO3 thin films prepared by pulsed electron deposition method. Mater. Today 3, 2707–2712 (2016)

  20. 20.

    A. Cyza, L. Cieniek, A. Kopia, Perovskite La1 xSrxFeO3 thin film deposited by laser ablation process. Arch. Metall. Mater. 61, 1063–1067 (2016)

  21. 21.

    N. Koonsaeng, T. Thaweechai, A. Wisitsoraat, W. Wattanathana, S. Wannapaiboon, S. Chotiwan, C. Veranitisagul, A. Laobuthee, Preparation of Sr-doped LaFeO3 by thermal decomposition of metal organic complex and their gas-sensing properties. SOJ Mater. Sci. Eng. 6, 1–9 (2018)

  22. 22.

    D. Triyono, C.A. Kafa, H. Laysandra, Effect of Sr-substitution on the structural and dielectric properties of LaFeO3 perovskite materials. J. Adv. Dielect. 5, 1850063 (2018)

  23. 23.

    W. Wang, B. Lin, H. Zhang, Y. Sun, X. Zhang, H. Yang, Synthesis, morphology and electrochemical performances of perovskite-type oxide LaxSr1− xFeO3 nanofibers prepared by electrospinning. J. Phys. Chem. Sol. 124, 144–150 (2019)

  24. 24.

    T. Fujii, I. Matsusue, D. Nakatsuka, M. Nakanishi, J. Takada, Synthesis and anomalous magnetic properties of LaFeO3 nanoparticles by hot soap method. Mater. Chem. Phys. 129, 805–809 (2011)

  25. 25.

    P. Tang, Y. Tong, H. Chen, F. Cao, G. Pan, Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst. Curr. Appl. Phys. 13, 340–343 (2013)

  26. 26.

    W. Haron, T. Thaweechai, W. Wattanathana, A. Laobuthee, H. Manaspiya, C. Veranitisagul, N. Koonsaeng, Structural characteristics and dielectric properties of La1 xCoxFeO3 and LaFe1 xCoxO3 synthesized via metal organic complexes. Energy Proc. 34, 791–800 (2013)

  27. 27.

    K. Ji, H. Dai, J. Deng, L. Song, S. Xie, W. Han, Glucose-assisted hydrothermal preparation and catalytic performance of porous LaFeO3 for toluene combustion. J. Sol. State Chem. 199, 164–170 (2013)

  28. 28.

    M.A. Gabal, A.A. Al-Juaid, S.M. Al-Rashed, M.A. Hussein, F. Al-Marzouki, Synthesis, characterization and electromagnetic properties of Zn-substituted CoFe2O4 via sucrose assisted combustion route. J. Magn. Magn. Mater. 426, 670–679 (2017)

  29. 29.

    S.T. Beckettb, M.G. Francesconi, P.M. Geary, G. Mackenzie, A.P.E. Maulny, DSC study of sucrose melting. Carbohydr. Res. 341, 2591–2599 (2006)

  30. 30.

    M.A. Gabal, S. Kosa, T.S. El Muttairi, Magnetic dilution effect of nano-crystalline NiFe2O4 synthesized via sucrose-assisted combustion route. Ceram. Int. 40, 675–681 (2014)

  31. 31.

    R. Abazari, S. Sanati, L.A. Saghatforoush, A unique and facile preparation of lanthanum ferrite nanoparticles in emulsion nanoreactors: morphology, structure, and efficient photocatalysis. Mater. Sci. Semicond. Process. 25, 301–306 (2014)

  32. 32.

    P.V. Gosavi, R.B. Biniwale, Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater. Chem. Phys. 119, 324–329 (2010)

  33. 33.

    G. Deng, Y. Chen, M. Tao, C. Wu, X. Shen, H. Yang, Electrochemical properties of La1−xSrxFeO3 (x = 0.2, 0.4) as negative electrode of Ni–MH batteries. Electrochim. Acta 54, 3910–3914 (2009)

  34. 34.

    C.A. Kafa, D. Triyono, H. Laysandra, Effect of Sr substitution on the room temperature electrical properties of La1 xSrxFeO3 nano-crystalline materials. AIP Conf. Proc. 1862, 030042 (2017). https://doi.org/10.1063/1.4991146

  35. 35.

    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)

  36. 36.

    M.A. Gabal, R.M. El-Shishtawy, Y.M. Al-Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324, 2258–2264 (2012)

  37. 37.

    Q. Lin, J. Xu, F. Yang, X. Yang, Y. He, The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties. J. Appl. Biomater. Funct. Mater. 16, 17–25 (2018)

  38. 38.

    Y. He, C. Lei, Q. Lin, J. Dong, Y. Yu, L. Wang, Mössbauer and structural properties of La-substituted Ni0.4Cu0.2Zn0.4Fe2O4 nanocrystalline ferrite. Sci. Adv. Mater. 7, 1809–1815 (2015)

  39. 39.

    R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett. 79, 1393–1396 (1997)

  40. 40.

    E. Winkler, R.D. Zyster, M.V. Mansilla, D. Fiorant, Surface anisotropy effects in NiO nanoparticles. Phys. Rev. B 72, 132409 (2005)

  41. 41.

    F. Yang, X.X. Yang, Q. Lin, R.J. Wang, H. Yang, Y. He, Microstructure and magnetic studies of La1 xSrxFeO3 nano particles fabricated by the citrate sol–gel method. Mater. Sci. 25, 231–237 (2019)

  42. 42.

    J. Li, X. Kou, Y. Qin, H. He, Microstructure and magnetic properties of La1 xSrxFeO3 δ nanoparticles. Phys. State Sol. 191, 255–259 (2002)

  43. 43.

    E.K. Abdel-Khalek, H.M. Mohamed, Synthesis, structural and magnetic properties of La1−xCaxFeO3 prepared by the co-precipitation method. Hyperfine Interact. 222, 57–67 (2013)

  44. 44.

    P. Mathur, A. Thakur, M. Singh, Effect of nanoparticles on the magnetic properties of Mn–Zn soft ferrite. J. Magn. Magn. Mater 320, 1364–1369 (2008)

  45. 45.

    Q. Li, W. Wang, Fabrication and properties of Mn0.5Zn0.5Fe2O4 nanofibers. Solid State Sci. 12, 1303–1306 (2010)

  46. 46.

    M.A. Gabal, F. Al-Solami, Y.M. Al-Angari, A.A. Al-Juaid, A.A. Ali, K. Huang, M. Alsabban, Auto-combustion synthesis and characterization of perovskite-type LaFeO3 nanocrystals prepared via different routes. Ceram. Int. https://doi.org/10.1016/j.ceramint.2019.05.187

  47. 47.

    A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)

  48. 48.

    A.S. Nesaraj, S. Dheenadayalan, I. Arul Raj, R. Pattabiraman, Wet chemical synthesis and characterization of strontium-doped LaLaFeO3 cathodes for an intermediate temperature solid oxide fuel cell application. J. Ceram. Process. Res. 13, 601–606 (2012)

  49. 49.

    H.M. El-Mallah, AC electrical conductivity and dielectric properties of perovskite (Pb, Ca)TiO3 ceramic. Acta Phys. Polon. A 122, 174 (2012)

  50. 50.

    K.K. Patankar, P.D. Dombale, V.L. Mathe, S.A. Patil, R.N. Patil, AC conductivity and magnetoelectric effect in MnFe1.8Cr0.2O4–BaTiO3 composites. Mater. Sci. Eng. B 8, 53 (2001)

  51. 51.

    M. Ajmal, N.A. Shah, A. Maqsood, M.S. Awan, M. Arif, Influence of sintering time on the structural, electrical and magnetic properties of polycrystalline Cu0.6Zn0.4Fe2O4 ferrites. J. Alloys Compd. 508, 226–232 (2010)

  52. 52.

    G. Sathishkumar, C. Venkataraju, K. Sivakumar, Synthesis structural and dielectric studies of nickel substituted cobalt–zinc ferrite. Mater. Sci. Appl. 1, 19–24 (2010)

  53. 53.

    M.R. Bhandare, H.V. Jamadar, A.T. Pathan, B.K. Chougule, A.M. Shaikh, Dielectric properties of Cu substituted Ni0.5−xZn0.3Mg0.2Fe2O4 ferrites. J. Alloys Compd. 509, L113–L118 (2011)

Download references

Author information

Correspondence to M. A. Gabal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabal, M.A., Al-Solami, F., Al Angari, Y.M. et al. Structural, magnetic, and electrical characterization of Sr-substituted LaFeO3 perovskite synthesized via sucrose auto-combustion route. J Mater Sci: Mater Electron (2020) doi:10.1007/s10854-020-02861-6

Download citation