Advertisement

Mesoporous Gd2O3/NiS2 microspheres: a novel electrode for energy storage applications

  • S. Dhanalakshmi
  • A. Mathi Vathani
  • V. Muthuraj
  • N. Prithivikumaran
  • S. KaruthapandianEmail author
Article
  • 43 Downloads

Abstract

Development of novel Faradic electrode with excellent rate capability and long-lasting characteristics determines the performance of supercapacitor (SC) in current scenario. Rare-earth metal oxides have received considerable attention in SC domain with high volumetric energy density and capacitive performance. In this context, we have fabricated gadolinia/nickel sulphide nanocomposite via simple chemistry approach followed by two step hydrothermal method. Especially, the gadolinia/nickel sulphide nanocomposite synthesized in the current study offers high specific capacitance (354 F g−1 at a constant current density of 0.5 A g−1), low charge transfer resistance (6.37 Ω) and outstanding cycle life (1.3% loss capacitance loss even after 5000 continuous charge/discharge cycles). Such enduring energy characteristics of gadolinia based nanocomposite will create a huge impact in the future energy storage systems

Notes

Supplementary material

10854_2020_2858_MOESM1_ESM.docx (190 kb)
Supplementary file1 (DOCX 190 kb)

References

  1. 1.
    H. Banda, S. Perie, B. Daffos, P.L. Taberna, L. Dubois, O. Crosnier, P. Simon, D. Lee, G.D. Paepe, F. Duclairoir, Sparsely pillared graphene materials for high performance supercapacitors: improving ion transport and storage capacity. ACS Nano 13, 1443 (2019)CrossRefGoogle Scholar
  2. 2.
    Y. Lin, Z. Chen, C. Yu, W. Zhong, Heteroatom-doped sheet like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors. ACS Sustain. Chem. Eng. 7, 3389 (2019)CrossRefGoogle Scholar
  3. 3.
    B. Liu, Y. Liu, H. Chen, M. Yang, L. Huaming, MnO2 nanostructures deposited on graphene-like porous carbon nanosheets for high-rate performance and high-energy density asymmetric supercapacitors. ACS Sustain. Chem. Eng. 7, 3101 (2019)CrossRefGoogle Scholar
  4. 4.
    S. Schweizer, J. Landwehr, B.J.M. Etzold, R.H. Meibner, M. Amkreutz, P. Schiffels, J.R. Hill, Combined computational and experimental study on the influence of surface chemistry of carbon-based electrodes on electrode–electrolyte interactions in supercapacitors. J. Phys. Chem. C 123, 2716 (2019)CrossRefGoogle Scholar
  5. 5.
    Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Bresser, D. Buchhoiz, A. Moretti, A. Varzi, S. Passerini, Alternative binders for sustainable electrochemical energy storage the transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 11, 3096 (2014)CrossRefGoogle Scholar
  7. 7.
    K. Ramakrishnan, C. Nithiya, R. Karvembu, Heterostructure of two different 2D materials based on MoS2 nanoflowers @ rGO: an electrode material for sodium-ion capacitors. Nanoscale Adv. 1, 334 (2019)CrossRefGoogle Scholar
  8. 8.
    H. Du, Y. Pan, X. Zhang, F. Cao, T. Wan, H. Du, R. Joshi, C. Dewei, Silver nanowire/nickel hydroxide nanosheet composite for a transparent electrode and all-solid-state supercapacitor. Nanoscale Adv. 1, 140 (2019)CrossRefGoogle Scholar
  9. 9.
    C. Masarapu, H.F. Zeng, K.H. Hung, B. Wei, Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3, 2199 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Zhu, S. Muralti, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferrera, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011)CrossRefGoogle Scholar
  11. 11.
    K. Liu, Z. Hu, R. Xue, J. Zhang, J. Zhu, Electrodeposition of high stable poly (3, 4-ethylenedioxythiophene) in ionic liquids and its potential applications in electrochemical capacitor. J. Power Sources 179, 858 (2008)CrossRefGoogle Scholar
  12. 12.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  13. 13.
    K.F. Chen, D. Xue, Rare earth and transitional metal colloidal supercapacitors. Sci. China Technol. Sci. 58(11), 1768 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Kumar, A. Agrawal, R.K. Nagarale, A. Sharma, High performance supercapacitors from novel metal-doped ceria-decorated aminated graphene. J. Phys. Chem. B 120(6), 3107 (2015)Google Scholar
  15. 15.
    M. Majumder, R.B. Choudhary, A.K. Thakur, C.S. Rout, G. Gupta, Rare earth metal oxide (RE2O3; RE = Nd, Gd, and Yb) incorporated polyindole composites: gravimetric and volumetric capacitive performance for supercapacitor applications. N. J. Chem. 42(7), 5295 (2018)CrossRefGoogle Scholar
  16. 16.
    E.W. Awin, S. Sridar, R. Shabadi, R. Kumar, Structural, functional and mechanical properties of spark plasma sintered gadolinia (Gd2O3). Ceram. Int. 42, 1384 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Zhang, W. Wu, S. Yan, G. Chu, S. Zhao, Enhanced photocatalytic activity for the degradation of Rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature. Appl. Surf. Sci. 344, 249 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Zho, L. Melro, T.D. Camargo, C. Isnaldi, D.D. Souza, F. Duarte, D. Ananias, E.B. Lami, A.M.D. Santos, A.B. Timmons, Adsorption study of a macro-RAFT agent onto SiO2-coated Gd2O3:Eu3+ nanorods: requirements and limitations. Appl. Surf. Sci. 394, 519 (2017)CrossRefGoogle Scholar
  19. 19.
    G.B. Xu, L.W. Yang, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage. J. Power Sources 295, 305 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Manavalan, U. Rajai, S.M. Chen, T.W. Chen, R.J. Ramalingam, T. Maiyalagan, A. Sathiyan, Q. Hao, W. Lei, Microwave-assisted synthesis of gadolinium(III) oxide decorated reduced graphene oxide nanocomposite for detection of hydrogen peroxide in biological and clinical samples. J. Electroanal. Chem. 837, 167 (2019)CrossRefGoogle Scholar
  21. 21.
    H.M. Shiri, A. Ehsani, Pulse electrosynthesis of novel wormlike gadolinium oxide nanostructure and its nanocomposite with conjugated electroactive polymer as a hybrid and high efficient electrode material for energy storage device. J. Colloid Interface Sci. 484, 70 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, F. Lu, L. Pan, Y. Xu, Y. Yang, Y. Bando, D. Golberg, J. Yao, X. Wang, Improved cycling stability of NiS2 cathode through designing “Kiwano” hollow structure. J. Mater. Chem. A 6, 11978 (2013)CrossRefGoogle Scholar
  23. 23.
    X.Y. Yu, X.W. Lou, Mixed metal sulphides for electrochemical energy storage and conversion. Adv. Energy Mater. 8(3), 1701592 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, W. Sun, X. Rui, B. Li, L.H. Tan, G. Guo, S. Madhavi, Y. Zong, Q. Yan, One-pot synthesis of tunable crystalline Ni3S4 @ amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small 11(30), 201403772 (2015)Google Scholar
  25. 25.
    N.S. Muthu, M. Gopalan, Mesoporous nickel sulphide nanostructures for enhanced supercapacitor performance. Appl. Surf. Sci. 480, 186 (2019)CrossRefGoogle Scholar
  26. 26.
    N. Praveen, S.A. Ansari, S.G. Ansari, H. Fouad, M. Nasser, M.A. Salam, M.H. Cho, Solid-state symmetrical supercapacitor based on hierarchical flower-like nickel sulphide with shape-controlled morphological evolution. Electrochim. Acta 268, 82 (2018)CrossRefGoogle Scholar
  27. 27.
    T.Z. Hung, Z.W. Yin, S.B. Betzler, W. Zheng, J. Yang, H. Zheng, Nickel sulphide nanostructures prepared by laser irradiation for efficient electro-catalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 367, 115 (2019)CrossRefGoogle Scholar
  28. 28.
    F. Abed, M. Aghazadeh, B. Arhami, Preparation of Gd2O3 coral-like nanostructure by pulse electrodeposition-heat-treatment method. Mater. Lett. 99, 11 (2013)CrossRefGoogle Scholar
  29. 29.
    M.W. Ahmad, C.R. Kim, J.S. Baeck, Y. Chang, T.J. Kim, J.E. Bae, K.S. Chae, G.H. Lee, Bovine serum albumin (BSA) and cleaved-BSA conjugated ultrasmall Gd2O3 nanoparticles: synthesis, characterization, and application to MRI contrast agents. Colloids Surf. A 450, 67 (2014)CrossRefGoogle Scholar
  30. 30.
    N. Babayevska, G. Nowaczyk, M. Jarek, K. Zaleski, S. Jurga, Synthesis and study of bifunctional core–shell nanostructures based on ZnO @ Gd2O3. J. Alloys Compds 672, 350 (2016)CrossRefGoogle Scholar
  31. 31.
    I.A. Mkhalid, Photocatalytic remediation of atrazine under visible light radiation using Pd–Gd2O3 nanospheres. J. Alloys Compds 682, 766 (2016)CrossRefGoogle Scholar
  32. 32.
    T. Grzyb, R.J. Wiglusz, V. Nagimyi, A. Kotlov, S. Lis, Revised crystal structure and luminescent properties of gadolinium oxyfluoride Gd4O3F6 doped with Eu3+ ions. Dalton Trans. 43, 6925 (2014)CrossRefGoogle Scholar
  33. 33.
    S. Pan, J. Zhu, X. Liu, Preparation, electrochemical properties, and adsorption kinetics of Ni3S2/graphene nanocomposites using alkyldithiocarbonatio complexes of nickel(II) as single-source precursors. N. J. Chem. 37, 654 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Vadivel, D. Maruthamani, M. Kumaravel, B. Saravanakumar, B. Paul, S.D. Siddhartha, S. Dhar, K. Saravanakumar, V. Muthuraj, Supercapacitor studies on BiPO4 nanoparticles synthesized through a simple microwave approach. J. Taibah Univ. Sci. 11, 661 (2017)CrossRefGoogle Scholar
  35. 35.
    J.J. William, I.M. Babu, G. Muralidharan, Microwave-assisted fabrication of l-arginine capped α-Ni(OH)2 @ microstructures as an electrode material for high performance hybrid supercapacitors. Mater. Chem. Phys. 224, 357 (2019)CrossRefGoogle Scholar
  36. 36.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Porous NiO/C nanocomposites as electrode material for electrochemical supercapacitors. ACS Sustain. Chem. Eng. 1(9), 1110 (2013)CrossRefGoogle Scholar
  37. 37.
    I.M. Babu, J.J. William, G. Muralidharan, Carboxymethyl cellulose aided fabrication of flaky structured mesoporous β-Co(OH)2/C nanocomposite for supercapacitors. J. Mater. Sci. Mater. Electron. 30(3), 2107 (2019)CrossRefGoogle Scholar
  38. 38.
    B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 4484 (2012)CrossRefGoogle Scholar
  39. 39.
    I.M. Babu, J.J. William, G. Muralidharan, Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. Appl. Surf. Sci. 480, 371 (2019)CrossRefGoogle Scholar
  40. 40.
    J.J. William, I.M. Babu, G. Muralidharan, Spongy structured α-Ni(OH)2: facile and rapid synthesis for supercapattery applications. Mater. Lett. 238, 35 (2019)CrossRefGoogle Scholar
  41. 41.
    I.M. Babu, J.J. William, G. Muralidharan, Surfactant tuned morphology of mesoporous β-Co(OH)2/CMC nanoflakes: a prospective candidate for supercapacitors. J. Solid State Electrochem. 23, 1325 (2019)CrossRefGoogle Scholar
  42. 42.
    K.K. Purushothaman, B. Saravanakumar, I.M. Babu, B. Sethuraman, G. Muralidharan, Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv. 4, 23485 (2014)CrossRefGoogle Scholar
  43. 43.
    I.M. Babu, K.K. Purushothaman, G. Muralidharan, Ag3O4 grafted NiO nanosheet for high performance supercapacitors. J. Mater. Chem. A 3, 420 (2014)CrossRefGoogle Scholar
  44. 44.
    I.M. Babu, J.J. William, G. Muralidharan, Hierarchical β-Co(OH)2/CoO nanosheets: an additive free approach for supercapattery applications. Ionics 25, 2437 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Chemistry V. H. N. Senthikumara Nadar College (Autonomous)VirudhunagarIndia
  2. 2.Department of PhysicsV. H. N. Senthikumara Nadar College (Autonomous)VirudhunagarIndia

Personalised recommendations